

Tom Coppeto

October 30, 2008

DRAFT

Introduction to OSID V3
for V2 Developers

Copyright © 2008 Massachusetts Institute of Technology

Contents
1. Introduction 6

What Is An OSID? 8
Reusability 11

2. Specification Framework 12
OSIDs 12
OSID Binders 12
Writing to The OSIDs 13
Specification Principles 14

3. Structural Changes 16
Osid Managers 16
Osid Sessions 16
Osid Objects 17
Properties 19
Lists 19
OsidContext 20
DateTime 20

4. Proxy Authentication 21

5. Managing OSID Objects 24
Metadata 25
Creating OSID Objects 26

6. Cataloging & Federation 28
OsidCatalogs 28
Catalogs and Sessions 30
Hierarchical Catalogs 32
Catalog Adapters 33

7. Searching 35
Basic Search 35
Searching Records 37
Joining Queries 37
Advanced Search Patterns 39

8. Notifications 45

9. Session Controls 47
Pre-Authorizations 47
Views 47

10. OSID Records 49
Genus Types 50

11. Errors & Exceptions 51
Specification Errors and The Java Binding 51
Encapsulation 51
Java Runtime Exceptions 52
Execution Flow 52
Errors and Method Contracts 53
OSID Objects 54

12. OSID Adapters 55

13. Agent & Authentication 58
Authentication Process 58
Agent 60

14. Fun With Repository 61
Core Asset 61
The Meaning of Asset 61
Asset Content 62
Asset Credits 64
Subjects 65
Searching for Assets 67
Delightful Ambiguities 68
Asset Coverage 70
Intellectual Property 71
Asset Alternatives & Accessibility 72

15. Transaction Trouble 74

16. OSID Orchestration 77

17. Caveats 78
Casting 78
Nulls & Method Overloading 79

18. Loading OSIDs 80

19. Components 83

20. New Services 85
Cataloging 85
Configuration 85
Locale 85
Installation 85
Journaling 85
Metering 86
Provisioning 86
Relationship 86

DRAFT

 3

Resource 86
Spatial 86
Topology 86
Transport 87
Type 87

21. Interface Navigator 88

DRAFT

4

Introduction
 1

In 2006, The V3 process was kicked off and the group assembled a list of problems to
solve and new functionality to add. Each item on the laundry list fell into one of three
categories:

• Interoperability
• Simplicity
• Functionality

We can have any two. Describing a complete service with complete functionality can
either be interoperable or simple. V2 achieves a certain balance but several
interoperability issues and use cases are left as an exercise for the reader. Yet, the V3
working group defined interoperability as more important than the other two combined
and this led to finding a new balance among these characteristics.

Looking at the V3 interfaces through the linear spreadsheet of definitions is formidable
and one can easily get lost in what seems like a bloat of interface definitions. First, it
would be helpful to define these terms with respect to the OSIDs.

• Interoperability: the degree to which an OSID Provider and OSID Consumer
can successfully interface having never met

• Simplicity: the ease in which a new OSID Consumer or OSID Provider can get
into the game, and, the specificity of the interface definition to avoid ambiguity
without sacrificing interoperability

• Functionality: the degree of richness available through an interface definition
such that it is desirable to use the OSID as a primary API for new development

While the feedback concerning OSID V2 collected in the meetings, online forums and by
way of the IMS bug reporting generally was specific to a particular issue, use case or
feature request, criticisms of the OSIDs received in various venues clustered around
several themes.

DRAFT

6

• OSIDs too restrictive
• OSIDs too general
• OSIDs too complicated
• OSIDs too hard to use
• OSIDs use Type agreements
• OSIDs don’t work in web environments
• OSIDs don’t bind well to Java
• OSIDs are not cross-platform independent
• OSIDs should be replaced with Web Services
• OSID Authentication is broken and/or unnecessary
• OSIDs need more examples

The is not intended to paint the OSIDs in a poor light as there are many success stories,
but drive the OSIDs in a positive direction to increase utility and adoption. V3 is an
updated look at the OSIDs with emphasis on the engineering and clarity of the
interfaces. The following directives in this effort have emerged.

• OSIDs should cater to the new developer or small project with a simple set of
interfaces to achieve basic interoperability as well as be able to provide more
complex services for those working with more complex systems.

• OSIDs should be clearer about what a Type agreement means and improve the
methods of forging Type agreements.

• OSIDs need to be more sensitive to software execution, including thread-
protection, session management, and error handling.

• OSIDs need to provide a better means for creating and updating data.

• OSIDs should only focus on issues of interoperability and remain neutral to
any notion of best programming practice.

Given that this document represents an OSID V3 work-in-progress, it operates under the
assumption that the goal of the OSIDs and its binding to a language platform remain
valid. Some effort has been made to better understand what OSIDs are and the problem
space addressed by them. The following summarizes the scope of the OSIDs:

• OSIDs are software interfaces used by software programmers (they also turn
out to be a good design framework for architects). They are not network
protocols, databases or data formats.

DRAFT

 7

• OSIDs serve as a common rendezvous point in software for an OSID Consumer
and an OSID Provider. This rendezvous point may have little to do with how
either an OSID Consumer or an OSID Provider view their domain or construct
their software.

• OSIDs do not specify implementation issues such as data persistence &
transport.

• An OSID defines comprehensive interfaces to cover a broad domain of
functionality for a service.

• An OSID is not a programmer’s utility toolkit although tools may be developed
and shared that complement the OSIDs.

• OSIDs are not a programmers guide to writing better code and they are not
designed to prevent poor coding practices.

• OSIDs may be extended in such a way as to expose more data known to
smaller domains.

• OSID Provider implementations can be composed of other OSIDs and OSID
Consumers can orchestrate multiple OSIDs.

This document serves as an overview of proposed OSID changes and is being used as a
platform for discussion in ongoing OSID workshops. This is an evolving document.
Code examples are presented to offer concrete examples of the current state and to
evaluate the engineering of the interfaces, thus For Developers.

What Is An OSID?
One challenge has been to define and communicate what an OSID is, and more
importantly, what it isn’t. The OSID binding is essentially an API and there will always
be APIs that are easier to use or provide more granular control. The OSID is striving to
achieve very broad interoperability and interoperability is what it values most.

Interoperability is a word applied to many similar but not identical concepts. If a
computer sends a TCP packet that can be read by another computer that only
understands TCP, we can say that both computers interoperate. However, if the sender
transmits an ADSP packet to a TCP-only computer, we obviously do not have
interoperability. At the level of the network and serialized protocols, all parties must
agree to interoperate.

Interoperability can be examined at a higher level. If a program expects to retrieve data
from an Oracle database, but that data is only available through HTTP, we do not have
interoperability. An agreement can be made to store all data in an Oracle database to
achieve interoperability. However, all parties would need to also agree on database

DRAFT

8

layout, names of columns, data types, stored procedures, and even the identity of the
database instance.

A further climb of the stack into application software can strive to reach higher level
agreements. If there was a single way an application stores and retrieves JPEG images, it
would not matter what kind of database or file system stored the images. However, if
the data stored describe people, it would require a different means to query and
assemble the data unless there was an agreement on how to access any and all objects.
This type of object-blind model often lacks the context necessary to build a useful
application.

Climbing further and agreements can be made on application behavior and appearance.
One might get interoperability among Swing widgets but this interoperability could not
cross over into the web domain. The ultimate agreement is a single method and in many
languages this is called main().

OSIDs define interoperability at the service layer (thus the S). While this term is also
used for a variety of things ranging from machines, to processes listening on ports, to
useful application utilities, The OSID Service layer is where issues of protocol,
persistence, and data transport are underneath. Their design point is simply to cover
many of the mechanical variances commonly found in client/server computing while
exposing enough context and extensibility on which to build a rich application.

The OSIDs expose to their consumers the means for searching, retrieving, creating,
deleting and updating a variety of objects defined throughout its service definitions as
well as the means for categorizing, making cross-object relationships and receiving out-
of-band notification messages.

One might be tempted to draw a typical stack model but a one-dimensional view of the
world does little to help classify what the OSIDs can do (we’ll save that for the
marketing department). If the OSIDs were pushed to a lower level in the system, they
would expose a persistence model or the presence of a transport. If they were pulled too
high up, they would either lose context or get locked into a specific application
environment. The space the OSIDs occupy in a stack is not a line but a region.

At the lowest layer in this region is the system implementation and generally persistence
and transport are the issues solved in most client/server systems. Different OSID
Providers may be brought together in such a way as to give an application the point of
view that it is using a single OSID Provider. There may also be encapsulated layers to
localize or transform data, implement cross-service orchestration, or any such function
that is not directly dependent on a graphics user interface environment (just one stack
diagram and that’s it).

DRAFT

 9

Persistence & Transport

Multi-Provider Routing

Business Logic

Data Presentation
OSID

OSID

OSID

OSID

A complete interoperability solution can be composed of a stack of OSIDs. The lowest
OSID Provider in such a stack can be referred to as the OSID implementation while the
upper layers are referred to as OSID Adapters. The highest layer responsible for
instantiating the first OSID is generally referred to as the application which may or may
not be a user interface. The layers can be skipped, they can be reordered, they can be
duplicated. There are many possibilities to consider in design. The OSID is
fundamentally a tool for encapsulation.

Encapsulation is the key. Encapsulation for whom, consumer or provider? The
encapsulation OSIDs strive for is a two-way contract. The OSID Consumer and the OSID
Provider are separated such that an unknown third party can interject. This third party
can select only among multiple OSID Providers as well as select among multiple OSID-
aware applications to mix-and-match. This third party may wish to provide some
additional logic, through OSID Adapters, that transform data or implement business
logic.

If a change in OSID Provider requires recompiling the application, then we have a
problem. Now, does this mean all OSID Providers will work with all applications? No,
that would require magic. In the realm of reality, an OSID Provider implementing a
Repository service to provide JPEG images should be replaceable with another provider
of the Repository service also providing JPEG images. But as this document will explore,
there is much more than can be done other than simply delivering the bits of the image if
we minimize the service assumptions made by the application and be creative in how
software interfaces can be used.

So, we don’t yet have a crisp or catchy definition but a series of characteristics and a
vision of a problem to be solved.

OSIDs are software interfaces. The software interface is expected to be consumed and
implemented within a single running application environment. The implementation
may, in turn, make use of over-the-wire protocols and databases. The code immediately
on each side of the interface, whether dynamically loaded or not, runs as part of a single
running program.

DRAFT

10

Uh oh, language dependence! When in Java use JDBC and when in Ruby use DBI.
Software constructs are required to implement the interface patterns that fuel the OSIDs.
Without them, the OSIDs would be just a common transport. And that’s just no fun.

Reusability
Basic approaches tend to model OSIDs as reusable libraries to achieve a write-once
reusable set of service utilities that can be plugged into an application. The OSIDs are a
good choice for such a framework and there are certainly other choices available that
accomplish this goal for some service domains.

The OSIDs broad approach to the domain covered compared with other utility
frameworks can be subtle. A line-by-line comparison and the OSIDs appear less detailed
offering the application less control of the workings and configuration of the underlying
implementation.

The OSID value proposition goes both ways. If one were to calculate the total cost of
ownership from customer interaction through development to ongoing maintenance and
deployment, the number is surprising. Systems, with their complex databases and
protocols, racks of servers, power supplies, and miles of cable, would seem a likely
candidate for cost management. However, a well-designed application carries with it
teams of programmers, interface designers, usability testers, accessibility watchers,
documentation writers, project managers, and quality assurance processes.

The return on investment also differs. Many system components, such as authentication
servers, directories, and databases are not developed in-house and tend to last for many
years, evolving slowly from one patch release to the next. In many environments, these
activities are performed by a skeletal staff responsible for the maintenance of a multiple
systems.

Application changes tend to be more significant from one release to the next requiring
sizable ongoing investment. Limiting assumptions made by application designers of the
problem scope and the underlying infrastructure, when it does change, often result in
throwing away many work-years of investment. Application code that is too tangled up
with the details of data markup, authentication systems, persistence models or an
obsolete libraries may find itself the subject of a meeting to decide if its time to walk
away.

OSIDs force themselves between the application and these assumptions. This can be
cumbersome to application programmers accustomed to handling the underlying details
directly (they can also write the OSID Providers to accompany their application).

OSIDs exist to protect investments in applications. This is where the bulk of the cost is.

DRAFT

 11

Specification Framework
 2

OSIDs
The OSIDs are specifications defined in XML documents called the X-OSIDs. The X-
OSID schema strictly defines the structure of an OSID interface. The purpose of the X-
OSID is produce OSID Bindings and other artifacts generated from the specifications,
such as presentational documents. The end-products are the OSID Bindings. One does
not code to the X-OSID since it is merely XML data that expresses a specification. It is
also not useful to view the X-OSID as a means of data transport since an OSID does not
specify data format and transport.

The current draft OSIDs are maintained in Excel spreadsheets. This was, in theory, for
the convenience of writing the specification and to clearly read the definitions. The data
models, the relationships among the various interfaces, and what it takes to get started
using an OSID is difficult to ascertain without some familiarity with the OSID patterns
and binding behavior. We don’t expect a developer to pick up a spreadsheet and start
coding. This is a job better suited for a developer’s guide written for a targeted audience,
scoped to a particular problem area, within a given programming language.

OSID Binders
The OSID Binders transform the OSIDs into OSID Bindings which are expressions of the
specifications in native programming languages. The V2 Java OSID Binding created
some awkward constructs as seen from a programmer’s view. The original OSIDs were
written in Java while at the same time attempting to predict how it would later fit into
other programming language paradigms. Because V3 OSIDs use a neutral specification
language, there is room for a language binder to figure out how to best apply the
definitions to a given language while living within the bounds of the OSIDs. An example
is Java exception handling where the OSIDs simply define error states and the Java OSID
Binder decides how to implement them.

The rules used by a given language binder are another level of specifications as they
most directly affect the interoperability among software components. For all practical
purposes, the spreadsheets and the X-OSIDs are simply back-end tools for constructing
the OSID Bindings people will use and upon which interoperability depends.

DRAFT

12

Writing to The OSIDs
A shortcut throughout the V3 OSIDs is the use of interface inheritance. This technique
helps to define clusters of common methods, readability, and ensure consistency.
Depending on how the OSID Binder treats this (a binder may expand the common
definitions and eliminate any hint of inheritance, or it may preserve the constructs, or it
may provide new hierarchy scheme), there is the opportunity for misinterpretation on
how the OSIDs should work.

In V2, all managers implement the OsidManager super-interface, which contains a set of
methods common to all managers. An implementation of RepositoryManager may elect to

a) Implement an OsidManager and parallel the OSID specification.
b) Implement an OsidManager and organize the methods differently.

In V3, several additional top-level interfaces are defined. One such example is OsidObject
that which other objects such as Agent and Asset implement. The Java binder (currently)
respects this interface hierarchy and defines an OsidObject Java interface. An OSID
implementation of Asset has the following choices:

a) Implement an OsidObject and extend other Asset from it.
b) Do not implement OsidObject separately but satisfy the complete interface

contract for both Asset and OsidObject in the Asset implementation.
c) Use a completely different class hierarchy for the implementation of Asset and

satisfy the interface contract for OsidObject + Asset in some other object.

The moral of the story is that while an implementation must ultimately satisfy the
interface contract specified in an OSID, it is free to do whatever it wants to get there. The
OSIDs do not describe the arrangement of the implementation classes. A common
arrangement in V3 is to define a class that implements all of RepositoryProfile,
RepositoryManager and RepositoryProxyManager. However, it would not be wise to have
the same object implement AssetLookupSession or AssetList since these interfaces require
stateful objects while the managers are stateless. More on this later.

The super-interfaces do provide a handy vocabulary to describe a category of OSID
interfaces. This document refers to these interfaces to mean all interfaces of this kind.

The class hierarchy is strictly in the realm of the OSID Provider and the OSID Consumer
should not make any assumptions concerning interface inheritance. In Java, for example,
one can use a combination of casting, generics and/or polymorphism to move up or
down both the interface and object hierarchies. This poses a problem for the OSIDs
because the OSID Provider’s objects must not be visible to the OSID Consumer. There’s

DRAFT

 13

also a possibility that casting an OSID interface creates another object that does not exist
from the OSID Provider’s view (see Casting). Therefore, OSID V3 tries not to specify any
objects or methods that require casting because any relationships are now explicitly
described in the specification. The super-interfaces, if bound, do not imply a class
relationship and shouldn’t be accessed by an OSID Consumer.

Two exceptions to the casting rule are the instantiation of a manager (although it could
be considered cleaner to specify a method for each OSID, but we didn’t bother) and
acquiring an interface to a record. More on this mechanism later.

Specification Principles
Along with the scope listed in the previous section, there are also a number of principles
that have been followed in assembling the OSID Specifications.

• OSIDs define a contract between two parties. Their interoperability depends on a
contract that is clear and precise at the expense of specification verbosity.

• Methods define arguments and return the values using specifically typed
primitives and interfaces.

• Having two crisp methods is better than one vague method requiring more
code to implement.

• OSIDs do not assume likely scenarios. OSID patterns are applied consistently, even
when it seems like overkill, to facilitate adaptation or other unforeseen
circumstances.

• Method signatures are constructed using a set of defined primitives and other
OSID interfaces. The OSID Specification cannot reference any external primitive or
class (although an OSID Binder may inject one).

• Method overloading is not permitted.

• Methods are not a scarce resource. Parameter-stuffing a method should be avoided
with a set of well-scoped methods.

• OSIDs should avoid situations where an OSID Consumer implements
interoperability logic based on an error state (programming by exception). Apart
from operational, user-driven errors, there must be a way to use an OSID to avoid
interoperability or parameter validity errors.

• Consistency is important to establish a single learning curve.

• Inline interface documentation faces the OSID Consumer. The OSID Provider is
bound by the method contracts and may stray from the letter of the

DRAFT

14

documentation. Issues of application control flow that should be respected by an
OSID Provider are documented in the Provider Notes.

There are also a number of usage principles in consuming or implementing an OSID.

• Nulls are not permitted as return values or method arguments.

• OSID Providers should help enforce the interface contract through state and
parameter value checking even if it doesn’t care.

• OSID Providers are expected to manage unspecified integration issues such as
configuration, localization or presentation formats. Often, these are best
encapsulated in an OSID Adapter.

• OSID Provider implementors should not sweat over a pile of methods with no
return value. It isn’t likely the OSID Consumer will notice.

• OSID Consumers should avoid breaking encapsulation through casting except
where explicitly permitted following a Type negotiation.

• OSID Consumers should have a healthy skepticism of an OSID Provider, apart
from adherence to the specification. Examples include eternal blocking and infinite
iteration.

DRAFT

 15

Structural Changes
 3

Osid Managers
In V2, the manager’s primary function is to access OsidObjects, which, in turn, may
access other OsidObjects. OSID Providers had the option to not implement arbitrary
methods resulting in a vaguer understanding of interoperability.

In V2, all data access through an OSID to an implementation had to be thread protected
in the event multiple processing threads accessed the OsidManager. Managing session
data across multiple users using a single manager was not possible.

In V3, the OsidManager remains the primary entry point but is reduced in scope. Its only
purpose is to profile a service and provide access to OsidSessions. Access to OsidObjects is
described in OsidSessions. The OsidManager profiles a service by providing methods to
test for compliance for some aspect of a service, is it supported? If the OSID depends on
any Types, the OsidManager also provides the means to test for Type compatibility.

The interoperability tests inside the OsidManager are specified in an OsidProfile. The
OsidProfile interface is not visible to the OSID Consumer but is implemented by an
OsidManager. It is used as a means of organizing the managers’ interoperability issues
separately from session instantiation that may occur among multiple managers within
the same OSID.

Osid Sessions
The primary purpose of the OsidSession is to provide a place where session related data
can reside and to allow the OsidManager to operate in a stateless multi-user environment.
The OsidSession, by specification, is to be used by a single user and within a single
processing thread. An OsidManager is intended to be instantiated once per service while
an OsidSession may be created for each user, operation or request. An implementation
should therefore strive to perform most of the heavy-lifting while initializing an
OsidManager, and attempt to keep the OsidSession initialization as lightweight as possible
since the OsidSessions will be created and tossed frequently while a single OsidManager
may be running for the entire life of the application.

The OsidSession defines a cluster of methods that represent an aspect of a service. The
groupings are sorted such that it is more likely than not a OSID Consumer and/or OSID
Provider will be interested in all the methods in a cluster. Many clusters are organized

DRAFT

16

along the lines of read and write although the sessions provide a framework for adding
more interesting aspects to an OSID while not adding a burden to those OSID
Consumers or OSID Providers who have no interest in additional functionality.
Consequently, there may be many sessions defined in an OSID. A simple application
may only use a single session while an administrative console may be interested in
making use of many sessions.

Methods defined in an OsidSession are usually designated as mandatory because it is the
support of a session itself that is optional. Therefore, interface level compliance can be
described in terms of what OsidSessions are required by an OSID Consumer and
available from an OSID Provider. This compliance is described in the OsidManager.

RepositoryManager

supportsAssetLookup();
getAssetLookupSesion();
supportsAssetAdmin();

getAssetAdminSession();
supportsAssetNotificatiion();

getAssetNotificationSession();
…

AssetLookupSession

getAsset(Id);
getAssets();

getAssetsByType();
…

A session is created through a manager.

Osid Objects
OsidObjects map to a resource used within a service provider and are identified by an Id.
In V2, the OsidObject is generally used to carry the Id and a set of generally applicable
data that can be retrieved or updated. In some cases the OsidObject would take on an
object-oriented flavor and provide more action-oriented methods and in other cases
actions were defined in the OsidManager.

In V3, the OsidObject is strictly the carrier of an Id, and a set of data. Actions upon
objects, mappings with other objects, and updates to the data are generally defined in an
OsidSession. The goal is not to involve the OsidObject into additional compliance issues
already addressed at the session level.

DRAFT

 17

Asset

getId();
getDisplayName();
getDescription();

getProvider();
getPublishedDate();

…

An example OSID object.

The OsidObject is not an object in an object-oriented way. The OSIDs describe services,
not objects, and as such they are expressed in a service-oriented fashion through a series
of sessions and methods. The OsidObject identifies a resource managed by a service,
along with any data describing it. It cannot be viewed as a complete object or data
record although it may be implemented as a single object within an OSID Provider. More
importantly, persistence is based on changing one or more elements of the object, not
persisting a snapshot of the object through the service layer. This view is consistent with
V2. V3 OSIDs separate read, write and search operations, and better facilitate bulk
changes to an object (see Updating OSID Objects).

The data defined in an OsidObject is minimal to keep the objects general. Where it can be
said, an object generally has, the data element is defined. However the data may be
extended through an OsidRecord. An OsidRecord is an interface whose specification is
identified by a Type and is intended to be used to access additional data elements.
Relationships among OSID objects and any actions are defined in a session. An Asset, for
example, may be extended to describe a Song using a Song Asset Type.

An example OSID object.

Asset

getId();
getDisplayName();
getDescription();

getProvider();
getPublishedDate();

…
getAssetRecord(songType);

Song

getAlbum();
getTrack();

...

Where OSID objects are required as method parameters, their Id is used. This removes
the requirement that an object retrieval must always be performed before an action is
taken. For method returns, the OSID Consumer generally has the choice of retrieving the
OsidObject or the Id.

DRAFT

18

Properties
Some V2 OsidObjects, such as Assessment, Asset, Message, and LogEntry define only the
top level generalized data elements and leave any additional data to be defined in the
form of an interface plug and an associated Type.

In V3, this model has been generalized across all OsidObjects through OsidRecord
interfaces leaving the Properties mechanism to be somewhat redundant. However,
accessing data access through a record requires a Type agreement. Some applications
may find it useful to display information available through an OsidRecord without
having any knowledge about the record type.

For this reason, a properties list remains available through the OsidObject. The properties
interface has been simplified to allow for easier traversal and the properties Type has
been consolidated into the OsidRecord Type.

Lists
In V2, the OSID Iterator provides a sequential one-at-a-time pass through of a set of
objects. V3 allows for multiple objects to be requested in a single call. The interface is
now referred to as an OsidList and remains sequential.

AssetList

hasNext();
getNextAsset();

available();
getNextAssets();

An example OSID list..

The OSID iterators attracted criticism when compared to built-in language constructs
such as arrays, hash tables, and Java’s Collection interfaces. There are two design
principles worth noting here.

One principle is that the OSIDs are typed. Methods return what they say they return.
getNextAsset() returns an Asset and getNextAgent() returns an Agent. In cases where this
cannot be possible, a Type is used to define the return. The interface contract is defined to
be as specific as possible to maximize interoperability.

Another principle is that an iterator maybe bottomless, or may appear bottomless if the
applications runs out of memory. An application programmer might assume a fixed
amount and the idea of adapting to a variable result set may seem daunting. However,
as more OSID Providers are brought into a federation, the question of how will the
application handle all the results becomes relevant. OSIDs do not assume a fixed set of

DRAFT

 19

elements that can be all held in core memory at once and do provide a framework to
increase the size of a federation behind the application programmer’s back.

A stream is a good way to think about an OsidList.

OsidContext
The OsidContext had been used primarily as a means of passing authentication-related
data through the interface for the purposes of seeding an Authentication OSID Provider.
Understanding how authentication should be performed using the OSIDs has been
difficult and in practice many methods have been implemented.

The V3 Authentication OSID has been reworked to define an in-band method of passing
data for the process of acquiring or validating an authentication credential that requires
an agreed Type specification (typed interface) between the OSID Consumer and OSID
Provider.

V3 favors making agreements based on interface specifications and not based on data
(see Types). OsidContext is not defined in V3.

DateTime
V2 used a long to represent an abstract date and time. The problem with many abstract
date/time representations is the precision is fixed. An OSID Provider using a date of
1776 is represented by an abstract date of January 1, 1776 12:00.00 a.m. If the date is
unknown, often 0 or -1 is used. The New Year’s party of 1970 had a lot of events going
on.

V3 defines a DateTime interface to convey variable precision. A date/time might only be
known to the nearest century or the measurement recorded at a specific picosecond. The
DateTime isn’t subject to limitations caused by counting milliseconds from an arbitrary
time.

DateTime may also convey uncertainty. A historical event might have occurred in January
1944 but it is known that it occurred some time during that winter. A DateTime can
convey this by expressing year 1944, month 1, with a granularity of month, and an
uncertainty of +2 months / -1 month.

DRAFT

20

Proxy Authentication
 4

Proxy authentication is used when an authentication credential needs passing from
service to service. For example, a middle tier service may authenticate its user, and in
turn authenticate to a third-tier service. The third tier may be able to authenticate the
client directly based on some cryptographic data or based on an assertion from the
middle tier. This argues for a means to pass authentication or an identity through all the
OSIDs because it might be used in a middle tier.

middle
tier

client back-endclient credential middle tier &
client credential

Authentication flow in a typical three-tier system.

In V2, this is somewhat addressed by using the OsidContext. The missing pieces are
session creation and the means to accurately describe interoperability. In V3, a separate
OsidProxyManager is defined for each OSID to support the passing of an external
credential at the time of session acquisition. The separation at the manager level is
intended not to confuse proxy-authentication with the acquisition of a primary
authentication credential.

In the middle tier, the existence of an explicit back-end tier is somewhat of a red herring
since this would be encapsulated by another OSID. The question really becomes, how do
we pass a credential or an identity into an OSID from the outside? On the client side, the
Authentication OSID is encapsulated within another OSID and not directly accessed by
the application layer. On the server side, the process flips and the process of
authentication occurs before another service, local or remote, is accessed.

DRAFT

 21

middle tier process

Authen-
tication

Authentication
Validation Ses-

sion
Repository

Proxy Manager

client credential

Examining the middle-tier. The client credential received from the incoming protocol is passed to
an Authentication OSID that returns an Authentication object. This Authentication object contains
the Agent identity and can be passed to another OSID via an OsidProxyManager.

The inbound Authentication OSID Provider and the Repository OSID Provider (which in
turn may use another Authentication OSID Provider) agree on the Authentication Type.
While the Authentication object makes available the Agent Id for use with an
Authorization OSID internal to Repository, its Type specifies the interface providing
access to any credentials that may be passed to another tier.

Some application server environments handle user authentication outside the scope of
any given application instance. In these cases, the Authentication OSID does nothing
more than map the supplied authentication identifier to an Agent Id and wrap that inside
an Authentication object. Using this design pattern, although not useful for passing a
client credential to another tier, the mapping of an authentication identifier to an OSID
identifier is modularized. This modularity is very helpful for solving problems of
federation and changes to authentication specific identifiers.

One may wish to use the Authorization OSID directly for application-specific
authorizations outside the scope of any other OSID. Having access to the Agent Id via
Authentication makes this possible.

An OSID Provider may elect to support a proxy authentication manager where proxy
authentication is not applicable to broaden interface interoperability.

DRAFT

22

Cookie[] cookies = request.getCookies();
for (Cookie c: cookies) {
 if (c.getName().equals(SAML_COOKIE)) {
 token.setInputData(cookie.getValue());
 }
}

AuthenticationValidationSession avs;
RepositorySearchSession rss;
Authentication auth;
SamlTokenInterface token = new SamlTokenInterface();

try {
 avs = authMgr.getAuthenticationValidationSession();

 try {
 auth = avs.authenticate(token, SAML_TYPE);
 } catch (UnsupportedException ue) {
 error(“authentication provider does not support SAML_TYPE”);
 } catch (PermissionDeniedException pde) {
 error(“hmmm.. I have no authorization to authenticate this user. How silly.”);
 }

 try {
 rss = repProxyMgr.getAssetSearchSession(auth);
 } catch (UnsupportedException ue) {
 error(“repository provider does not support this authentication”);
 }
} catch (OperationFailedException ofe) {
 error(“an error occurred somewhere along the way”);
}

Code example of a servlet handling a SAML token via a cookie and passing the identity to a reposi?
tory service. The SamlTokenInterface is an example type specification understood by the authenti?
cation service identified by the Type SAML_TYPE. The managers have been instantiated as class
variables in the servlet and used by all servlet instances.

DRAFT

 23

Managing OSID Objects
 5

In V2, updating an OsidObject is performed through an update of an individual data
element within the object itself. Multiple updates, even if required by the OSID Provider,
had to be enabled through the OSID Transaction interface. V2 combines both an object
and a transaction oriented update paradigm where object retrieval is required before an
update can occur and each data element has a corresponding update method. The rules
for updating data is assumed as part of a data agreement which is not consistently
identified with a Type.

V3 uses an entirely different approach. First, a separate interface for updating exists for
each OsidObject that defines a set of methods. These methods generally correspond to the
data elements defined in that object. The OSID Consumer may set one or more elements,
then pass the interface through an update method in an OsidSession. This interface is
called an OsidForm.

Updating an OSID object involves getting its form, setting the desired changes and invoking the
session’s update method.

AssetAdminSession

getAssetFormForUpdate(Id);
updateAsset(Id, AssetForm);

...

AssetForm

getDisplayNameMetadata();
setDisplayName(string);

getDescriptionMetadata();
setDescription(string);

getPublishedDateMetadata();
setPublishedDate(DateTime);

...

DRAFT

24

A more complete flow showing including an Asset retrieval. The retrieval is optional if the OSID
Consumer already knows the asset’s Id.

AssetForm

setStuff();
...

AssetLookupSession

getAsset(Id);
getAssets();

...

AssetAdminSession

getAssetFormForUpdate(Id);
updateAsset(Id, AssetForm);

...

Asset

getId();
...

It appears the object has been split into two halves; the read half and the update half.
This allows the OSID Provider maximum flexibility in implementing an update
mechanism and allows for a separate compliance designation. Here are a couple of
implementation scenarios.

• An OSID Provider may implement a transactional-based mechanism where the
implementation the OsidForm contains only metadata and any element set by
the OSID Consumer in the form is included in a single update transaction.

• An OSID Provider may implement an object-based mechanism where the OSID
Provider’s object implements both the Asset and AssetForm interfaces, and
contains all the data known to the OSID Provider. Invoking the update method
persists the entire object using an object-oriented persistence layer. In this
scenario, getAssetFormForUpdate() and getAsset(Id) retrieve the same object.

A Type that indicates the typed interface for an OsidObject also specified the interface for
the OsidForm.

Metadata
The form also makes available metadata on a per-element basis to aid in specifying
certain restrictions the OSI Provider may impose on an update. Metadata for a
description may indicate the text length is limited to 255 characters, or a valid number is
between 1 and 10, or only the strings “red”, “green” and “blue” are accepted. An
OsidForm is requested for the object to be modified and the OSID Provider can vary the
metadata on an object by object basis.

DRAFT

 25

Code example of examining Metadata before updating an Asset.

AssetForm form = session.getAssetFormForUpdate(assetId);
Metdata metdadata = form.getMetadataForDisplayName();
if (metadata.isReadOnly()) {
 print “display name cannot be modified”;
} else {
 print “Display name limited to “ + metdata.getMaxStringLength() + “ characters.”
}
…
form.setDisplayName(displayName);
if (!form.isValid()) {
 print “Display name is invalid: “ + form.getValidationMessage();
} else {
 session.updateAsset(assetId, form);
}

Metadata is supplied by an OSID Provider to help guide the OSID Consumer through an
update. Metadata can help an OSID Consumer avoid an error resulting from invalid data
and provide hints to a user interface on how to display input fields.

OsidForms also offer a validation method. This method can help catch problems resulting
from the combination of data submitted through an OsidForm.

Creating OSID Objects
In V2, creating an OsidObject involved specifying the set of object elements as parameters
defined in a create method. In V3, the OsidForm is used to create OSID objects. The
OsidForm also serves to simplify the parameter lists of the create methods.

The create process is analogous to updating an OSID object.

AssetAdminSession

getAssetForm();
createAsset(AssetForm);

...

AssetForm

getDisplayNameMetadata();
setDisplayName(string);

getDescriptionMetadata();
setDescription(string);

getPublishedDateMetadata();
setPublishedDate(DateTime);

...

An OSID Provider may require certain data to be supplied in creating an Asset. An OSID
Provider can specify in the Metadata if the field is required or optional. The OSID also
needs to convey which OsidRecords are required for create. It does this through the
canCreateAssetWithRecordTypes() method.

DRAFT

26

Code example of creating an Asset with a record.

/* attempt to create the asset with no records */
Type[] types = new Type[1];
if (!session.canCreateAssetWithRecordType(types)) {
 print “A record type is required to create an asset.”;
}

/* attempt to create an asset with a painting record */
types[0] = paintingRecordType;
if (!session.canCreateAssetWithRecordType(types)) {
 error “Cannot create an asset with a painting record type.”;
 return;
}

AssetForm form = session.getAssetFormForCreate();
if (!form.hasRecordType(paintingRecordType)) {
 error “form has no record, why did it say I could create one?”;
 return;
}

PaintingFormRecord record = form.getAssetFormRecord(paintingRecordType);
Metadata metadata = record.getCanvasWidthMetadata();
if (metadata.isReadOnly()) {
 error “cannot set canvas width”;
 return;
}

if ((newCanvasWidth > metadata.getMaxCardinalSize()) ||
 (newCanvasWidth < metadata.getMinCardinalSize())) {
 error “canvas width is invalid”;
 return;
}

if (!form.isValid()) {
 error “invalid form: “ + form.getValidationMessage();
 return;
}

/* this example only checked a single field, there may be multiple required
 fields for a successful create operation */

Asset asset = session.createAsset(form);

DRAFT

 27

Cataloging & Federation
 6

OsidCatalogs
Some OSID Objects serve the purpose of cataloging other OSID Objects. In V2, examples
of this categorization are Repository, Dictionary, and ReadableLog. V3 has expanded this set
into a variety of other OSIDs.

An object maps to an OsidCatalog. At the interface level, this does not necessarily imply
that an OsiodCatalog contains an OsidObject although it may be implemented that way. An
OsidObject may be mapped to more than one OsidCatalog and is always mapped to at
least one OsidCatalog. In the Repository OSID, the OsidCatalog for Assets is Repository.

An example use of Repositories for the MIT Visualizing Cultures Project.

Repository

Black Ships &
Samurai

Collection

Repository

Yokohama
Boomtown
Collection

Repository

Ground Zero
Hiroshima
Collection

Asset

Asset

Asset

Asset

Asset

Asset

DRAFT

28

An OsidCatalog is an OsidObject and it defines additional methods to convey a provider of
the catalog. This can offer a different interpretation for the use of a catalog.

Example use of Repositories representing various providers.

Repository Repository Repository

Cataloging objects can be used to serve a variety of organizing needs ranging from
expressing an ontology, to customizing a view for an OSID Consumer (a Repository of
PDF files) to facilitating a workflow (a Repository of incomplete Assets). A Repository can
be used to present categories of Assets useful to an OSID Consumer that may or may not
be independent of the organization of the underlying data storage.

Repository

War of 1812

Repository

Civil War

Repository

World War I

Repository

Iraq War

An example organization using Repositories.

An example workflow using Repositories.

Repository

Empty Assets

Repository

Authoring

Repository

Verification

Repository

Approval

Repository

Published

Repository

Archive

The Repository OSID in particular defines additional relationships for capturing subject
matter described in the Repository chapter and the Workflow OSID can capture the state
of the Asset as it travels through a Workflow process. Cataloging, however, provides a
generic means for organizing OsidObjects throughout the OSIDs that can be used to
provide desired views of collections to an OSID Consumer.

DRAFT

 29

Catalogs and Sessions
When an OsidObject is created, it is created with a mapping to an OsidCatalog. For
example, an Asset is created with a mapping to the Repository to which the

AssetAdminSession is associated. An AssetLookupSession is associated with a particular
Repository from which to retrieve Assets. An OSID provides a separate session for
changing these mappings.

Simple OSID Providers and OSID Consumers may have no use for the notion of
cataloging. As such, it is an optional area of compliance referred to as visible federation.
A federation is visible if one can request an OSID Session within a category or container.
There is always a default session that does not require specifying a federated object. An
AssetLookupSession, for example, can be accessed by specifying a Repository or by
specifying no Repository. This default mechanism exists for OSID Consumers that are
unaware how to select a Repository and leaves it to the OSID Provider how an
appropriate federated object is selected.

Getting a default session. An OSID Provider may elect to provide a root hierarchy node or some
other Repository may be assigned for a particular OSID Consumer based on its configuration.

AssetLookupSession

getRepository();
getAsset(Id);
getAssets();

...

Repository

getId();
getDisplayName();
getDescription();

...

RepositoryManager

supportsVisibleFederation();
supportsAssetLookup();

getAssetLookupSession();
getAssetLookupSessionForRepository(Id);

supportsRepositoryLookup();
getRepositoryLookupSession();

…

DRAFT

30

Getting an AssetLookupSession where the OSID Consumer specifies the Repository.

AssetLookupSession

getRepository();
getAsset(Id);
getAssets();

...

Repository

getId();
getDisplayName();
getDescription();

...

RepositoryManager

supportsVisibleFederation();
supportsAssetLookup();

getAssetLookupSession();
getAssetLookupSessionForRepository(Id);

supportsRepositoryLookup();
getRepositoryLookupSession();

…

RepositoryLookupSession

getRepository(Id);
getRepositories();

...

The previous diagrams show how the sessions come together to describe several types
of interoperability.

• The OSID Consumer has no knowledge of a Repository nor does it know to find
one. In V2, a Repository Id would be given to the application programmer to
hand into the Repository OSID. This makes it more difficult to change the
Repository used by the application and removes the ability for the OSID
Provider to reorganize. OSID Adapters, although requiring additional code,
provide the ultimate flexibility in deciding how a default Repository can be
selected.

• The OSID Consumer requires access to Repositories and provides end-user
functionality for searching and selecting Repositories. Such functionality may go
hand in hand with an application to organize Assets or as a means to scope a
federated search. This requires the OSID Provider support Repository lookup
sessions.

• The OSID Provider has no concept of Repositories. In this case, the OSID
Provider must expose its own Asset collection through a single Repository
interface for the getRepository() method of the AssetLookupSession and assign a
plausible Id to it. This would not be compatible with an OSID Consumer
requiring visible federation or Repository lookups. However, this can be layered
over such an OSID Provider through the use of an OSID Adapter.

DRAFT

 31

The Cataloging OSID can be used by an OSID Provider to factor out the cataloging
implementation into a separate OSID.

Hierarchical Catalogs
Many V3 OSIDs define interfaces for organizing objects into hierarchies. The hierarchy
interface is exposed directly in the OSID to facilitate the alignment of an OsidObject with
an Id in the hierarchy. Often, a position in the hierarchy will imply a certain behavior
depending on the OSID, the OsidObject and the hierarchy defined. These behaviors are
defined in the specification.

For example, a Repository OSID may not only support the Repository service, but also
support a hierarchy of Repositories. A Repository that is a parent of another Repository
implicitly includes the Assets of the child Repository in its Repository. This is a useful tool in
a federated scheme where an OSID Provider may wish to offer more granularity in its
federated views.

Repositories structured in a hierarchy.

Repository

Wars

Repository

Civil War

Repository

War of 1812

Repositories and their Assets.

Repository

War of 1812

Repository

Civil War

AssetAssetAssetAsset

DRAFT

32

The Wars Repository implicitly includes the assets of each child Repository.

AssetAssetAssetAsset

Repository

Wars

The OsidCatalog hierarchies behave in reverse of a hierarchy that describes inheritance.
This is so that the roots of the hierarchy roots represent the root of the federation. Other
hierarchies may define different behavior.

A federated scheme, such as the one illustrated above, creates an ambiguity when it
comes to identifying objects for administrative operations. For example, an OSID
Consumer may wish to look at an implicit repository for searching but see the explicit
repository when managing Repository mappings. OsidSessions provide methods to enable
and disable federation. These toggles are called views (see Session Views).

The Hierarchy OSID can be used by an OSID Provider to factor out a hierarchy
implementation.

Catalog Adapters
Federation can be accomplished by using OSID Adapters. An OSID Adapter can
combine multiple repositories from various OSID Providers. A simple federating OSID
Adapter may loop through each sub-repository on a method-by-method basis. More
complex adapters can be constructed that optimize for search patterns, routing or subject
material.

DRAFT

 33

A federation of repositories.

Jamaica Plain
Historical
Society

Repository

Museum of
Fine Arts

Repository

Boston
Athenaeum
Repository

Visualizing
Cultures

Repository

Wars
Repository

MIT
Federated
Repository

MFA
Picasso

Repository

Black Ships
& Samurai
Repository

Yokohama
Boomtown
Repository

Ground Zero
1945

Repository

World War II
Repository

Civil War
Repository

War of 1812
Repository

Catalog OSID Adapters may be developed for a variety of purposes. See the OSID
Adapters chapter for more examples.

DRAFT

34

Searching
 7

In V2, searching is performed by passing an arbitrary search object. In V3, searching is
performed by using a set of interfaces to increase interoperability.

Basic Search
The basic interface is an OsidQuery that can be used to construct a simple search of
objects. The Repository OSID defines an AssetQuery for searching Assets. The AssetQuery
specifies basic query parameters that align with the Asset object. This include the asset’s
display name, description, or provider.

Code example of using a search query. Assets are returned whose descriptions contain the string
“blues”.

AssetQuery query = searchSession.getAssetQuery();
query.matchDescription(“*blues*”, wildcardStringMatchType, true);
AssetList assets = searchSession.getAssetsByQuery(query);

The boolean flag in the match method instructs the OSID Provider to perform a positive
or a negative match. String match methods also define a Type parameter to describe the
format of the string.

Multiple fields can be matched within a query. Multiple field terms behave like a
boolean AND.

Code example of using a search query. Assets are returned whose descriptions contain the string
“blues” AND whose display names do not contain the word “Liberace”.

AssetQuery query = searchSession.getAssetQuery();
query.matchDescription(“*blues*”, wildcardStringMatchType, true);
query.matchDisplayName(“Liberace”, wordStringMatchType, false);
AssetList assets = searchSession.getAssetsByQuery(query);

OsidQuery interfaces also define a method for matching arbitrary keywords. What these
keywords match is up to the OSID Provider but they can be used to implement a simple
Google-esque search.

DRAFT

 35

Code example of using a search query of keywords. Assets are returned that are relevant for
“music” in some way only known to the OSID provider.

AssetQuery query = searchSession.getAssetQuery();
query.matchKeyword(“music”, wordStringMatchType, true);
AssetList assets = searchSession.getAssetsByQuery(query);

An OSID Consumer may invoke a match method multiple times. This results in a nested
boolean OR.

Code example of using multiple matches of the same element. Assets are returned that whose
published date matches the date specified in DateTime1 or DateTime2.

AssetQuery assetQuery = searchSession.getAssetQuery();
query.matchPublishedDate(DateTime1, true);
query.matchPublishedDate(DateTime2, true);

AssetList assets = searchSession.getAssetsByQuery(query);

It might seem that if dealing with text searches, multiple invocations of
matchDescription() could result in an AND term. To keep the methods simple and provide
consistency with non-string match methods where an AND results in an empty set,
particular arrangements of string searches has been delegated to the stringMatchType that
could indicate a pattern of a word sequence. For example:

matchDescription(“fox:brown:quick”,matchWordsAnyOrder, true);

The diagram below illustrates the interface control flow of a basic search query. The
AssetQuery interface is supplied by the OSID Provider and the OSID Consumer is
required to submit an AssetQuery it retrieved from the OSID Provider. The
implementation of the AssetQuery contains logic to assemble the query terms and map
those terms to underlying data.

DRAFT

36

The control flow for a basic asset search.

AssetSearchSession

getAssetQuery();
getAssetsByQuery(AssetQuery);

...

AssetQuery

matchKeyword(keyword, type, match);
matchDescription(desc, type, match);

...

AssetList

hasNext();
getNextAsset();

...

RepositoryManager

supportsAssetSearcn();
getAssetSearchSession();

...

Searching Records
An OsidObject can contain zero or more OsidRecords indicated by the record Types it
supports. An OsidQuery parallels the OsidObect and supports an OsidQuery record for each
record supported in the OsidObject.

Joining Queries
Some OsidObjects define references to other OsidObjects. An Asset, for example, defines a
Provider that is represented as a Resource. Assets may also relate through optional
sessions to various other objects, such as a Repository. It is useful to be able to assemble
search queries across these related objects. The result is an OsidQuery that joins the
OsidQuery interfaces defined for other objects, or even in other OSIDs.

The complexity this can introduce for an OSID Provider can be significant and it can also
result in circular dependencies if taken too far. To mitigate this, an OsidQuery specifies all

DRAFT

 37

joined terms as optional. However, an implementation of some of this functionality can
provide rich query functionality using the interoperability of the core specifications.

Below are two examples of searching for Assets by Provider.

Code examples of searching for Assets of a given Provider.

/* get assets whose provider has the specified Id */
AssetQuery assetQuery = searchSession.getAssetQuery();
assetQuery.matchProviderId(houghtonMifflinProviderId, true);
AssetList assets = searchSession.getAssetsByQuery(assetQuery);

/* get assets by the provider’s display name */
assetQuery = searchSession.getAssetQuery();
if (assetQuery.supportsResourceQuery()) {
 ResourceQuery resourceQuery = assetQuery.getProviderQuery();
 resourceQuery.matchDisplayName(“Houghton Mifflin”, plainStringMatchType, true);
}
assets = searchSession.getAssetsByQuery(assetQuery);

In the first query, the OSID Consumer has knowledge of a particular Resource Id. This
type of query can be performed through a simple match. If the OSID Consumer wishes
to perform a fuzzier query without knowledge of an Id, a ResourceQuery interface can be
accessed directly via the AssetQuery interface if the OSID Provider supports one. While
the AssetQuery is submitted into the search session to initiate the search transaction, the
method to retrieve the ResourceQuery appends the query term to the AssetQuery and can
be used without having to pass it back. The AssetQuery implementation is responsible for
keeping its state.

The boolean behavior is the same as the other match methods in the query. The
ResourceQuery term is AND’d with any other terms specified in the AssetQuery. Multiple
retrievals of a ResourceQuery on the provider method are OR’d.

DisplayName AND (Description1 OR Description2) AND (ProviderQuery1 OR ProviderQuery2)

The same boolean operator rules apply inside the Provider ResourceQuery.

DRAFT

38

If more than one AssetQuery is submitted to the search session, these are also OR’d. This
is the functional equivalent of performing separate queries and concatenating the
results.

The control flow for an asset search joining terms for repository and provider.

RepositoryQuery

matchKeyword(keyword, type, match);
matchDescription(desc, type, match);

...

AssetSearchSession

getAssetQuery();
getAssetsByQuery(AssetQuery);

...

AssetQuery

matchKeyword(keyword, type, match);
matchDescription(desc, type, match);

supportsResourceQuery()l
getResourceQuery();

supportsRepositoryQuery()
getRepositoryQuery();

AssetList

hasNext();
getNextAsset();

...

RepositoryManager

supportsAssetSearcn();
getAssetSearchSession();

...

ResourceQuery

matchKeyword(keyword, type, match);
matchDescription(desc, type, match);

...

Advanced Search Patterns
So far, the OSID searching patterns described the assembly of query terms. The other
consideration is the ability to govern the entire search. An OsidSearch interface can be
submitted alongside an OsidQuery array to manage the search.

DRAFT

 39

A common search option is to instruct the OSID Provider to limit the number of search
results.

AssetQuery query = searchSession.getAssetQuery();
query.matchDisplayName(“food”, stringMatchType, true);

AssetSearch search = searchSession.getAssetSearch();
search.limitResultSet(101, 200);
AssetSearchResults results = searchSession.getAssetBySearch(query, search);

AssetList assets = results.getAssets();

Code example of performing a search of food requesting results 101 through 200.

The getAssetsBySearch() method is the full monty. It also provides the means for ordering
results, estimating number of hits, and searching within a result set. An
OsidSearchResults interface that is returned represents the result of a search that can
contain results other than a list of objects. Here are some examples:

AssetQuery query = searchSession.getAssetQuery();
query.matchDisplayName(“food”, stringMatchType, true);

AssetSearch search = searchSession.getAssetSearch();
AssetSearchResults results = searchSession.getAssetBySearch(query, search);

query = searchSession.getAssetQuery();
query.matchDescription(“pizza”, wordStringMatchType, true);

AssetSearch search2 = searchSession.getAssetSearch();
search2.searchWithinAssetResults(search);
results = searchSession.getAssetsBySearch(query, search2);
AssetList assets = results.getAssets();

Code example of performing a search within a search.

The first result set is a handle to the results of the first search. A second AssetSearch is
retrieved that accepts the results of the first search. Also note that a new AssetQuery also
needs to be retrieved. These interfaces cover objects that implement state and can be
used only once.

AssetQuery query = searchSession.getAssetQuery();
query.matchDisplayName(“food”, stringMatchType, true);

AssetSearch search = searchSession.getAssetSearch();
search.limitResultSet(1, 10);
AssetSearchResults results = searchSession.getAssetBySearch(query, search);

print (“Results 1 - 10 of about “ + results.getResultSize() + “ for food.”);

Code example of estimating the number of search hits.

DRAFT

40

An OsidSearchResults also provides a method for getting a size estimate back from the
search (the output line may look familiar). The caveat here is that the result size may
have little to do with the number of assets available in the returned list. In this case, the
number of assets are limited to the first ten, but it is helpful for a user to see an estimate
of the quality of the overall search. Even in popular search engines, this number is never
accurate and should never be used as input to memory allocation.

The control flow for an asset search using the AssetSearch and AssetSearchResults interfaces.

AssetSearchSession

getAssetQuery();
getAssetSearch();

getAssetsBySearch(AssetQuery,AssetSearch);
...

AssetQuery

matchKeyword(keyword, type, match);
matchDescription(desc, type, match);

supportsResourceQuery()l
getResourceQuery();

supportsRepositoryQuery()
getRepositoryQuery();

AssetList

hasNext();
getNextAsset();

...

RepositoryManager

supportsAssetSearcn();
getAssetSearchSession();

...

AssetSearch

limitResultSet();
searchWithinAssetResults();

...

AssetSearchResults

getResultSize()
getAssets();

...

Finally, ordering of results may be specified using an OsidOrder interface. The OsidOrder
interfaces parallel the OsidObject and OsidQuery interfaces and their record interfaces are
identified with the same record Type.

DRAFT

 41

Osid
Search
Results

Record

Osid
Search

Record

A search record Type specifies the interfaces available across this set of core OSID interfaces.

AssetQuery query = searchSession.getAssetQuery();
query.matchDisplayName(“food”, stringMatchType, true);

AssetSearch search = searchSession.getAssetSearch();
AssetOrder order = searchSession.getAssetOrder();
order.orderByTitle();
order.orderByProvider();
search.orderAssetResults(order);

AssetSearchResults results = searchSession.getAssetBySearch(query, search);

Code example of ordering the Asset search results first by title then by provider.

AssetQuery query = searchSession.getAssetQuery();
query.matchDisplayName(“food”, stringMatchType, true);

AssetSearch search = searchSession.getAssetSearch();
AssetOrder assetOrder = searchSession.getAssetOrder();
assetOrder.orderByTitle();

if (assetOrder.supportsProviderOrder()) {
 ResourceOrder providerOrder = assetOrder.getProviderOrder();
 providerOrder.orderByDisplayName();
}

search.orderAssetResults(assetOrder);

AssetSearchResults results = searchSession.getAssetBySearch(query, search);

Code example of ordering the Asset search results first by title then by the provider’s display
name..

Ordering can be daisy chained in a similar manner to the query. In the first ordering
example, the OSID Consumer requested an ordering by provider but didn’t specify what

DRAFT

42

in the provider to sort. In the second example, the OSID Consumer specified the display
name of the provider.

Not all such relationships are available through the ordering interfaces. An ordering
relationship is available if there is a one-to-one relationship between the two objects.
Since an asset may be mapped to multiple repositories, there is no way to specify an
ordering of asset results by repository.

The control flow for an asset search using the AssetSearch, AssetOrder and AssetSearchResults
interfaces. If records or additional joins are added, this diagram might get a little complicated.

AssetSearchSession

getAssetQuery();
getAssetOrder();
getAssetSearch();

getAssetsBySearch(AssetQuery,AssetSearch);
...

AssetQuery

matchKeyword(keyword, type, match);
matchDescription(desc, type, match);

supportsResourceQuery()l
getResourceQuery();

supportsRepositoryQuery()
getRepositoryQuery();

AssetList

hasNext();
getNextAsset();

...

RepositoryManager

supportsAssetSearcn();
getAssetSearchSession();

...

AssetSearch

limitResultSet();
orderAssetResults(AssetOrder);

searchWithinAssetResults();
...

AssetOrder

orderByDisplayName()
orderByPublishedDate();

supportsProviderSearchOrder();
getProviderSearchOrder();

...

ResourceOrder

orderByDisplayName()
orderByDescription();

...

AssetSearchResults

getResultSize()
getAssets();

...

DRAFT

 43

The OsidSearch and the OsidSearchResults work in tandem to govern a search
independent of the query terms. They may also contain records that further convey
details of the search, perhaps the time it took for the search to complete. These search
record types are independent of the object record types and must be negotiated
separately through an OsidProfile.

DRAFT

44

Notifications
 8

OSID Consumers may hold onto objects for display purposes however any changes to
the objects are not reflected in the application unless the application refreshes the data at
some predetermined interval. The notification sessions provide an asynchronous means
to acquire real-time data.

Caching in various forms is sometimes an important tool however there’s no way of
knowing when the object cached is changed without the use of polling. It is desirable to
modify a OSID Provider’s behavior using layered OSID Adapters. The notification
sessions provide the means in which an OSID Provider can more efficiently enable the
creation of such OSID Adapters. A simple polling mechanism may be implemented
under the notification service where the polling parameters are managed by the OSID
Provider or a more scalable enterprise service bus can be utilized.

Another scenario is where an OSID Provider does not provide real-time data within its
objects but a third party OSID Adapter can access a notification mechanism for the same
data, such as a service bus. A real-time OSID Adapter can be layered upon an OSID
Provider to provide both real-time data and a notification service.

The notification mechanism is implemented using a callback mechanism through the
OSID. An OsidReceiver interface is specified for the particular OsidObject where
notifications are defined. The OSID Consumer gives its receiver implementation to the
notification session where it can then register for various service events. The events tend
to be defined as new, updated or deleted objects. The OSID Provider will invoke
methods in the OsidReceiver corresponding to these events.

The Messaging OSID can be used to factor out the notification aspect.

DRAFT

 45

AssetNotificationSession

registerForNewAssets();
registerForChangedAssets();
registerForChangedAsset(Id);
registerForDeletedAssets();
registerForDeletedAsset(Id);

...

RepositoryManager

supportsAssetNotification();
getAssetNotificationSession(AssetReceiver);

supportsVisibleFederation();
getAssetNotificationSessionForRepository(AssetReceiver);

…

AssetAdminSession

createAsset(AssetForm);
updateAsset(Id, AssetForm);

deleteAsset(Id);
...

AssetReceiver

newAsset(Id);
changedAsset(Id);
deletedAsset(Id);

...

Provider
Implementation

An AssetReceiver interface is implemented by the consumer and given to an
AssetNotificationSession where the OSID Consumer can subscribe to notifications pertaining to
various service events.

DRAFT

46

Session Controls
 9

Pre-Authorizations
A series of pre-authorization methods are defined in V3 to assist applications in
presenting a user interface that is more tailored to what the user is authorized to do. This
pattern is to help avoid the problem of an application displaying every conceivable
function of a service only to report on all the exceptions that may result. The pre-
authorizations are expressed as methods such as canAccessAssets(), canCreateAssets() and
canDeleteAsset(Id). A return of true does not guarantee that the corresponding methods
will succeed but only that a return of false can be interpreted as don’t bother. An OSID
Provider that has no means of determining a pre-authorization will simply return true
and defer the authorization check.

Pre-authorization is also useful in not wasting the user’s time in creating an asset only to
discover that it cannot be persisted.

Views
OsidSessions generally define views to instruct the OSID Provider on the desired result
set. Views are managed as toggles within a single session. One set of views commonly
found describes the behavior of a federated catalog. When an OSID Consumer is
performing lookups, it generally makes sense to look at the federated view of the
associated session catalog. Although an asset might not be defined within the current
repository, for example, the OSID Provider should fetch the asset in any child of the
repository. This is referred to as a federated view.

However, when managing the mappings between assets and repositories, the federated
view produces false indicators of what has been explicitly defined in a repository. The
OSID Consumer has the option of choosing an isolated view to compensate for this
behavior.

Another issue relates to what the OSID Provider should do when retrieving a set of
OSID objects whether by Id, Type or some other lookup method. If the user is not
authorized to see one or more objects in the resulting set, the OSID Provider may either
return a PERMISSION_DENIED error or it may simply omit that object from the resulting
set. The latter option increases interoperability but is not desirable in cases where
accuracy is required, such as synchronizing data. This behavior can also be managed
with another pair of views in the lookup sessions.

DRAFT

 47

A comparative view instructs the OSID Provider that interoperability is more important
than accuracy and the OSID Provider may omit objects from a returned list. A plenary
view instructs the OSID Provider that accuracy is more important in which cases an error
should be returned instead of an incomplete list.

The search interfaces assume a comparative view.

DRAFT

48

OSID Records
 10

An OsidObject may include zero or more OsidRecords. OsidRecords are a means of adding
information to an OsidObject. Each OsidRecord is in itself an interface whose specification
is identified by a Type. In V2, types were used to describe either a set of properties or a
kind of serializable object (where a Java String also implements Serializable). V3 scopes a
record to an interface that implements an OsidRecord interface.

An example Asset defining a painting record.

Asset

get(Id);
getDisplayName();
getDescription();

hasRecordType(type);
getAssetRecord(Type);

...

PaintingRecord

getPaintingCanvasWidth();
getPaintingCanvasHeight();

getPaintingStyle();
getPaintingOwner();

painting
RecordType

In the above example, an Asset supporting the paintingRecordType can deliver an object
that implements the PaintingRecord interface. Although Types are used to describe other
kinds of agreements in the OSIDs, the definition of an OsidRecord Type is the set of
methods composing an OsidRecord interface.

From here on we’ll favor the phrase record type specification in lieu of data or type
agreement regarding data available in OsidObjects. Part of the function of O.K.I. will
continue to be publishing record type interface specifications and now the language of
these agreements is more clearly defined. They look like OSIDs.

In the painting example, getAssetRecord() is defined to return an AssetRecord interface.
This is one of the only places in the OSIDs where a cast is used. The OSID Consumer has

DRAFT

 49

asked the OSID Provider of Asset for a record that implements the paintingRecordType
and the OSID Provider is required to return on if supported. It is safe for the OSID
Consumer to cast the returned AssetRecord into a PaintingRecord interface.

An OsidObject’s record Type is an extension of the core OSID Specification defining a set
of methods that can be invoked by an OSID Consumer. This record Type also specifies
the interface for the OsidQuery, OsidOrder, and OsidForm records. The OsidSearch and
OsidSearchResults are not specified through the OsidObject’s record Type. They are
specified through their own search Type however the OSIDs allow these search Types to
vary on an OsidObject by OsidObject basis.

OsidOrder

Record

OsidForm

Record

OsidQuery

Record

OsidObject

Record

An OsidObject’s record Type specifies the interfaces available across this set of core OSID
interfaces.

Genus Types
It might be tempting to use the record Type as a key for what the OsidObject represents.
The OsidRecord is intended to be a specification of methods and the existence of an
OsidRecord Type means the methods specified by the record Type must exist. An
application might want to know the difference between a book and a magazine.
Conjuring a record Type for each of book and magazine will impede interoperability
when the methods can be defined within a PublishedMaterialRecord to handle any
published material.

To avoid overloading record Types, all OsidObjects also define a genus Type. The genus
Type is used for nothing except to convey a singular classification of an OsidObject
without affecting the interoperability among record specifications. Genus Types can be
queried and modified but there can only be one genus Type per OsidObject. A genus Type
can be relevant where there is an is a relationship. More complex taxonomies should
make use of catalogs.

DRAFT

50

Errors & Exceptions
 11

Specification Errors and The Java Binding
Due to its Java heritage, V2 specifies exceptions. The V2 pattern is to define a single
exception for each OSID with various types of errors defined as string constants housed
within the exception. Because error handling varies widely across language platforms,
V3 defines only the type of error that may result from a method invocation and
delegates interpretation of the error syntax to the binding. V3 defines fewer errors
although the context of an error may vary across methods.

For the current V3 Java binding in development, OSID errors are mapped directly to
Java exceptions. An advantage of this binding is that an OSID Consumer can directly
catch a PERMISSION_DENIED and handle authorizations independently from other
exceptions without resorting to string matching. And because OsidExceptions are sub-
classed from Exception, exception messages and chaining are available which can
provide a better explanation for what went wrong. V2 didn’t do this because passing
messages from the OSID Provider (e.g.: your printer is out of paper) was seen as a violation
of encapsulation.

Encapsulation
To understand the advantages and disadvantages of this binding scheme, a common
understanding of encapsulation must be established. V3 defines encapsulation as
protecting the OSID Provider implementation from the application code (although if the
application casts then it’s game over) where the application code is able to perform an
action that ties it to a particular implementation through exposure of the internal
workings of that implementation. It doesn’t define encapsulation as hiding useful
diagnostic information from an end-user and V2 has fallen short this front. One can
argue that an application can parse your printer is out of paper, in whatever language it is
localized in, and take some action. This author says if you can pull that off then you
have earned your get out of jail free card.

Another encapsulation issue related to this exception scheme is seen in layering OSIDs.
In V2 a Repository OSID Provider would have to explicitly catch and re-throw
exceptions thrown from an underlying Authorization OSID. Some consider this to be a
Java anti-pattern because, frankly, it is a pain in the neck. In this V3 binding, if the error
types are shared in both the Repository and Authorization method definitions, which
they usually are, then Repository has the option of letting the Authorization exception

DRAFT

 51

sail through. The OsidException does not identify itself as coming from Authorization, so
there’s no reasonable programmatic way for the application to understand an
Authorization OSID exists under Repository. It might be useful to instruct an end-user
on what he needs to do to get authorized.

Java Runtime Exceptions
The other V3 binding twist is that some OSID errors are bound to Java runtime
exceptions that do not need to be explicitly caught. These errors follow the Java
paradigm of classifying errors between programming errors and other errors. OSID
errors that should be avoided by an OSID Consumer through correct use of the methods
such as NULL_ARGUMENT, UNIMPLEMENTED and ILLEGAL_STATE are bound to runtime
exceptions and not require special handling at each layer other than to create a bug
report.

Generally, an OSID Consumer should catch an exception if it is able to do something
about it. Many OSID errors fall into the category of programmatic or integration related
problems where an application may not handle it in a special way other than to say,
something doesn’t work. In Java, these are mapped to runtime exceptions that do not
require an explicit declaration or catch. The remaining errors are user-oriented and
communicate problems such as not found and already exists. The catch all remains
OPERATION _FAILED.

Execution Flow
Errors are specified for methods where they are believed to make sense with sensitivity
to the Java platform that any non-runtime exception method needs to be wrapped in a
try-catch block. To ease the burden on the OSID Consumer, some methods do not specify
any errors at all which may lead an OSID Provider to implement in such a way as to
avoid the error. A Java OSID Provider may not throw an exception or runtime exception
not defined in the interface (Java Errors resulting from the JVM are out of scope).

Error deferment is a technique that can be used when a method implementation fails but
no error is defined. A case is the OSID list where in V3 the errors have been removed
from the hasNext() method. If the implementation of the list loses contact with the
incoming stream and cannot execute hasNext(), for example, the implementation should
return true so the OSID Consumer will continue execution and return the error on the
getNext() method.

The OSIDs define errors that are sensitive to the execution flow of the OSID Consumer
by reducing the number of places where an interrupted may occur but remain general
enough to cover a wide variety of cases. Not all errors defined may result from a given
OSID Provider, but it is strongly recommended that errors at the programming level,

DRAFT

52

such as NULL_ARGUMENT and INVALID_STATE, always be honored by the OSID Provider
in that it will aid in the interoperability for the OSID Consumer across a more diverse set
of OSID Providers.

Errors and Method Contracts
Errors map to exceptions where available in the language binding and should be
handled and caught where the OSID Consumer wishes to take some action based on an
error condition. An error is used to indicate a failure of contract. A method returns the
specified object or an error results. Nulls are not permitted as a third option.

An OSID Consumer should always have the option of using the interface in such a way
to avoid dealing with errors directly in line with code execution. For example,
getAsset(assetId) may result in a not found, authorization, or operation failure. In the
not found case, the OSID Consumer has to deal with the error and may take an action
that affects the logic of the code, such as selecting a new asset to retrieve. In the latter
two there’s nothing the OSID Consumer can do other than to report on the problem and
move on.

New methods have been defined to assist in managing situations outside of the error
mechanism. One example are the pre-authorizations that can be used to mitigate
dependence on authorization errors. Another method is to use existence checks to
remove reliance on not found errors.

try {
 try {
 asset = session.getAsset(assetId);
 } catch (NotFoundException nfe) {
 go back and try another Id;
 }
} catch (OsidException oe);
 log(oe);
}

can become:

try {
 if (!session.assetExists(assetId)) {
 assetId = another Id;
 }
 asset = session.getAsset(assetId);
} catch (OsidException oe) {
 log(oe);
}

DRAFT

 53

 OSID Objects
Generally, error definitions have been removed for simple data access from an
OsidObject. OsidObjects have the Id available. getId() should not result in an error since
the Id does not change. The picture gets less clear for the other data retrieval methods
whose data may change and the OSID Provider may wish to provide real-time access.

The OSID Consumer is in the best position to decide whether it is interested in real-time
data. Forcing the OSID Consumer to catch errors in updating data when it has no
interest is unproductive. Yet, other consumers may rely on real-time data. Let’s first look
at the ways in which an OSID Provider might implement an OSID object.

1. The OSID Provider supplies all the data upon retrieval. The retrieval method
results in an error if the data cannot be accessed. The data is stale.

2. The OSID Provider supplies only the Id upon retrieval and each method
fetches the corresponding data element. The data is fresh but is not available if
something fails.

3. The OSID Provider supplies all the data upon retrieval and updates the data
when it is changed through the notification or some other mechanism. The
data is fresh and of an update fails, the data stales silently.

Many of today’s applications implement (1) although (3) would appear to be the more
efficient option. In either of case (2) or (3), some way should exist to let the
discriminating OSID Consumer know that the data is stale. The method isCurrent() exists
in the OsidObject to test for stale data that can be used or ignored according to the OSID
Consumer’s needs. This method is used to indicate any potential staleness in the OSID
object which includes the case where the OSID Provider is operational but has no means
of keeping the data current.

DRAFT

54

OSID Adapters
 12

An OSID Adapter pattern involves the layering of an OSID Provider on top of another to
tailor a service for a particular OSID Consumer or family of OSID Consumers. In V3, this
technique may be designed in a more structured manner through the session model.
Let’s start with a Repository OSID Provider that implements an AssetLookupSession and

an AssetAdminSession and work out a few possibilities from there.

A basic Repository OSID.

Asset
Lookup
Session

Repository
Manager

Asset
Admin
Session

A federating pattern for combining Repository OSID Providers.

Asset
Lookup
Session

Repository
Manager

Asset
Lookup
Session

Repository
Manager

Asset
Lookup
Session

Repository
Manager

DRAFT

 55

Adding a Repository service to an existing Repository OSID Provider. The OSID Adapter maintains
its own Asset-Repository mappings and adapts the lookup the manager and lookup session

Repository
Lookup
Session

Asset
Lookup
Session

Repository
Manager

Asset
Lookup
Session

Repository
Manager

Asset
Admin
Session

A notification service is added to the previous Repository OSID Provider. The notification OSID
Adapter can implement a listener to an information bus, communicate with the backend Repository
server directly, or implement a simply polling mechanism (yes, polling is bad, which is why one
might want it contained in a managed layer).

Asset
Lookup

Repository
Manager

Asset
Admin

Repository
Lookup

Asset
Lookup

Repository
Manager

Repository
Manager

Asset
Notification

Many more OSID Adapter patterns are such as translating or adding new types, caching
object retrievals, fixing bad implementations, offering different organizations of objects,
etc. Here is another example using an OsidCatalog:

DRAFT

56

A catalog OSID Adapter. A set of Repository objects are created in the adapter. One Repository
maps to a lookup of Assets in the underlying OSID. The other two Repository objects represent
queries to be performed in the underlying search session. For example, a Repository of Picasso’s
can be created by searching for Picasso-related assets to provide a simplified lookup service for an
application by encapsulating the more complex query.

Repository
Lookup

Asset
Lookup

Repository
Manager

Repository Repository

search query

Repository

search query

Asset
Lookup

Repository
Manager

Asset
Search

DRAFT

 57

Agent & Authentication
 13

Authentication Process
A strongly perceived problem in V2 was the Authentication OSID and its relationship to
Agent. Some of the issues stem from the fact that Authentication is a multi-service
process and incongruous to the other service-oriented OSIDs that also requires an
implementation alignment with the Agent OSID.

The steps of an authentication process are:

• Acquire a client authentication credential.
• Transport the credential to a remote peer.
• Validate the credential and determining the identity.

V3 divides the Authentication OSID into two aspects represented by sessions

• authentication acquisition
• authentication validation

and defines an Authentication object (not an OsidObject) to encapsulate the credential.
Transporting a credential is the responsibility of the OSID Consumer since a credential
will be serialized, in some format, and embedded in some application protocol. The
OSID only defines the touch points of this process.

Authentication
Acquisition

Session

Authentication

OSID Consumer

Input

to remote peer

serialized
credential

The authentication acquisition process.

DRAFT

58

The above diagram shows the general authentication acquisition process which is used
by a client-side application to gather authentication credentials in some agreed upon
format and send them to a remote peer for validation. Ideally, the specifics of the
authentication technology should be encapsulated within the Authentication OSID. A
username/password pair can be considered technology specific.

Yet the diagram shows an input. The input mechanism was designed for challenge-
response systems where a credential is generated in response to a challenge from a
remote peer. With a different type agreement, it can be used for a username and
password such that the OSID Consumer is tied to username/password based
Authentication OSID Providers.

In an enterprise environment, applications that prompt for passwords that are not the
approved single sign-on mechanism are frowned upon. In an integrated desktop
environment, the operating system handles login and provides means to reduce the
number of times a user needs to be prompted for a password (Apple’s Keychain, for
example). However, in the interest of neutrality, the specification allows for a variety of
possibilities applying the authentication input.

Another consideration is a Login component, where the component itself is coupled to
the Authentication OSID Provider and the application remains uncoupled from the
component. See Components.

The authentication validation process.

incoming
credential

from client
Consumer

Authentication
Validation
Session

Authentication

Agent

The validation process is similar to the acquisition process where a type agreement
specifies the format of the incoming credential retrieved from within an application

DRAFT

 59

protocol. The Authentication OSID returns a representation of that credential upon
validation which can reveal an Agent identity.

Agent
The agent identity is available from the validated authentication credential. In V2, Agent
was used as a resource identifier that not only was used for identifying an authenticated
entity for the Authorization OSID, but was also used to identify an entity that could
receive a message or be scheduled on a calendar. V3 factors these problems into distinct
OSIDs.

• Agent: is used to identify an authenticate-able entity for the Authorization
OSID. Agent is referenced in authorization and any other place throughout the
OSIDs where a method is available to describe: who did what.

• Resource: is used to separate the information about a person, place or thing
from its authentication counterpart. Resources are used throughout the OSIDs
where a method is available to describe: did what to whom. Decoupling
Resource from Agent also permits a Resource to map to multiple authentication
identities.

In Messaging, for example, a commitment reads Agent sends a message to Resource. The
Agent OSID maps only to an authentication credential. Consequently, Agent is merged
into the Authentication OSID and now one can argue that it now has service status. The
Group portion of Agent has been moved to Resource.

DRAFT

60

Fun With Repository
 14

Core Asset
The core V3 Asset defines a richer interface to capture common data commonly found in
digital content.

• getTitle(): the proper title may or may not be the same as getDisplayName()

• getProvider(): a Resource to identify a publisher or distributor

• getSource(): a Resource to identify the source or origin

• getCreatedDate(): gets the date when the asset (not necessarily the object in the
digital repository) was created

Along with these methods, several relationships can be constructed to convey more
information about the Asset. These are described in the following sections.

The Meaning of Asset
The structure of V3 Asset shifts around from what was defined in V2. What was
delivered through Records and Parts (like an abstract database) is now be specified as
OsidRecords, AssetContent and methods. This is hopefully a simplification. It may also be
obvious that all the Asset examples in this paper appear to have a bias toward digital
media.

What is a Repository Asset? An asset represents something in digital form. Without some
digital representation it is simply a data store. Looking back at the Wartime asset series,
the OSID assets displayed each represent an image as part of a collection of war related
items. It isn’t necessarily the war.

How an Asset is defined is sometimes in the eye of the definer. Consider these
possibilities:

• Picasso’s painting, Le Singe, is located in the Museum of Fine Arts. An Asset in
the museum’s Repository contains a photograph of the painting. The museum
uses the Repository to track its painting inventory and stores a single reference

DRAFT

 61

image per painting. The museum considers the Asset represent the painting
and it contains the image plus the dimensions of the canvas.

• A photograph of Le Singe was taken by another photographer. In the
photographer’s repository, the photographer considers the photograph to be
the Asset and it contains the image plus the shutter speed and frame number.

• The photographer produces each of a large, medium and thumbnail version of
the photograph of Le Singe. The photographer considers these to be digital
representations of the same asset because they were created from the same
photographic image.

• The next day, the photographer takes another identical photograph of Le Singe.
He considers this one to be a separate Asset from his previous photograph of
the painting. He then gives it to the MFA to use in their painting inventory
repository.

To begin sorting this mess out, first the distinction has to be made between the Asset and
the various digital means the content may be conveyed.

Asset Content
 An Asset represents something in digital form. The digital form is expressed through the
AssetContent interface. AssetContent hangs off the Asset and captures information about
the digital content including its data. An Asset may have zero of more AssetContents.

The AssetContent is identified with a Type. The Type may indicate that the content
represents an image, video, audio, a document, or something more specific. It is used
specifically to achieve interoperability around the format of the media while allowing
the OSID Consumer to select the desired media.

For example, an image may be delivered in a large size, a smaller size suitable for a web
page, or a thumbnail suitable for displaying many image samples. There can be an
AssetContent for each image related to the same Asset.

DRAFT

62

Multiple forms of content can be associated with an Asset.

Asset
getTitle()

getDescription()
getProvider()

getCopyright()
getAssetContents()
getAssetRecord()

...

Record

Asset Content

Image Record
getWidth()
getHeight()

Asset Content

Image Record
getWidth()
getHeight()

Asset Content

Image Record
getWidth()
getHeight()

Other examples of using multiple content may include supporting multiple formats,
providing varying quality, or enabling different types of accessibility. The image record
can dive deeper and describe the data format in more detail including issues of
compression, processing or codecs.

This leaves the AssetRecord to describe something about what the Asset represents since
the actual data is captured by the AssetContent. For example, if the Asset was an image of
Le Singe, then perhaps the AssetRecord could describe the actual painting itself. If a
second photograph of Le Singe were taken, then there are a couple of possibilities.

• Store the image of the second photograph as an additional AssetContent. Data
about the painting is kept in a single asset. The downside is that if there is different
core Asset data for each photograph, such as the photographer or copyright, then
this could be problematic.

• Create a separate Asset for the second photograph. The downside here is that any
record describing the painting is duplicated.

 V3 provides a means for separating the asset from the subject the asset depicts.

DRAFT

 63

Image Record
getWidth()
getHeight()

Asset Credits
Take the following example of a Picasso repository. Each Asset in the repository is a
photograph of a Picasso painting. A first pass design might define an OsidRecord for the
painter, the painting, and perhaps data bout the photograph.

A repository of Assets with various records.

Asset Content

Image Record

Asset Content

Image Record

Asset Content

Image Record

Asset

Painting
Record

Painter
Record

Photograph
Record

Asset

Painting
Record

Painter
Record

Photograph
Record

Asset

Painting
Record

Painter
Record

Photograph
Record

In this example, the painter record is the same among the three assets. This record might
also contain biographical information about the painter, that needs to be replicated
among the assets. OSID Consumers must have knowledge of the painter record Type to
access this data.

The V3 Repository OSID defines an AssetCredit interface to relate a person, such as the
creator, to the Asset. The person definition takes the form of a Resource interface. A
Resource is a simple OsidObject used where an identifiable identity is desired. In this case
a Resource with an OSID Id, a display name of Pablo Picasso, and his description can be
implemented. Any specific data, such as date of birth or hair color, would be defined in a
ResourceRecord.

DRAFT

64

AssetCredits are a way to relate people (Resources) to Assets.

Asset Content

Image Record

Asset Content

Image Record

Asset Content

Image Record

Asset
getAssetCredits();

Painting
Record

Photograph
Record

Asset
getAssetCredits();

Painting
Record

Photograph
Record

Asset
getAssetCredits();

Painting
Record

Photograph
Record

Resource
Pablo Picasso

Person
Record

Resources, like all OsidObjects, can be searched, created, updated and deleted. Because
the Repository OSID defines a Resource relationship to Asset, Resource queries can be
joined with Asset queries.

Another advantage of normalization is to increase interoperability. An OSID Consumer
may have no knowledge of a painter record Type. In Resource, the display name and
description is defined in core specification. Any OSID Consumer will be able to access it
and be able to perform cross-references by OSID Id.

Subjects
Another photograph of Figures On A Beach was added to the repository. Now there are
two painting records with duplicate information. Besides having maintain duplicate
data, searches for paintings by Picasso will result in two search hits for Figures On A
Beach. In a large repository, this is less than ideal. It would be much better to see a

DRAFT

 65

unique search result for each Picasso painting, then once a painting is selected to see its
variants.

Subjects can be used to normalize subject matter apart from Assets.

Subjects are a way to relate Assets to subject matter.

Resource
Pablo Picasso

Person
Record

Subject
Figures On A Beach

Painting
Record

Subject
Le Singe

Painting
Record

Subject
Self Portrait

Painting
Record

Asset
getAssetCredits();

Photograph
Record

Asset
getAssetCredits();

Photograph
Record

Asset
getAssetCredits();

Photograph
Record

Asset
getAssetCredits();

Photograph
Record

Asset Content

Image Record

Asset Content

Image Record

Asset Content

Image Record

Asset Content

Image Record

Similar to Resources, the Subject can normalize data as well as promote interoperability
by replacing property-stuffed records to Id-able objects.

Subjects are also hierarchical allowing OSID Consumers to traverse subject matter prior
to retrieving Assets.

DRAFT

66

It’s not a mess, it’s a Subject Hierarchy.

Subject
Paintings

Subject
Pablo Picasso

Painter
Record

Subject
Henri Matisse

Painter
Record

Subject
Figures On A Beach

Painting
Record

Subject
Le Singe

Painting
Record

Subject
Self Portrait

Painting
Record

Subject
Jazz

Painting
Record

Subject
European Painters

Subject
American Painters

Subject
Art

Subject
Painters

Subject
Sculpture

Subject
18th Century

As shown in the example above, Subjects can represent the painter as well as the
painting. Earlier, the painter was represented in a Resource and a mapping through
AssetCredit.

Searching for Assets
A search application may do the following to eliminate pages and pages of redundant
results caused by having many versions of many assets on the same subject.

1. Perform a keyword search using the SubjectSearchSession to retrieve a list of
pertinent Subjects.

DRAFT

 67

2. Perform a lookup of the desired Subject(s) to generate a list of Assets. This list may
be filtered based on Repository or provider.

3. Examine the available AssetContent for the selected Asset(s).

Delightful Ambiguities
An interface can be seen as a direct means of access to an underlying object
implementation.

Subject
Pablo Picasso

Subject
Jean Metzinger

Resource
Juan Gris

Data
Storage

Data
Storage

Data
Storage

A basic interface design.

This can lead to questions about which interface to apply. In this case, there can be an
ambiguity between the Resource and Subject interfaces. This may seem unfortunate since
the Resource and Subject interfaces are almost identical. Then again, if they are so similar
then they are easy to adapt.

Adapting Resources to Subjects.

Resource
Pablo Picasso

Resource
Jean Metzinger

Resource
Juan Gris

Data
Storage

Data
Storage

Data
Storage

Subject
Pablo Picasso

Subject
Jean Metzinger

Subect
Juan Gris

Repository OSID

Resource OSID

DRAFT

68

 An application geared toward searching a repository might examine Subjects. Another
application geared toward managing directories of people may interact solely with the
Resource OSID.

At times it may be warranted to provide an connection between the two OSIDs and this
can be accomplished in one of two ways.

A Subject adapter floats the underlying Resource Record through a Subject Record to allow for the
creation and update of Resources through the Subject interfaces.

Data
Storage

Data
Storage

Data
Storage

Resource
Pablo Picasso

Person Record

Resource
Juan Gris

Person Record

Resource
Jean Metzinger

Person Record

Subject
Pablo Picasso

Person Record

Subject
Juan Gris

Person Record

Subject
Jean Metzinger

Person Record
Repository OSID

Resource OSID

In the example above, the Subject contains all of the data found in the underlying
Resource. Consequently, operations available in the ResourceAdminSession would be
available in the SubjectAdminSession. The OSID Consumer of the Repository OSID
would not be aware that a Resource OSID existed underneath.

Why bother with a Resource OSID? If, for example, a Repository OSID Provider wished
to support musical content, it would have to figure out how to provide and/or maintain
a directory of musicians. If such a directory were available, the Repository OSID
Provider can federate the underlying Resource OSID and make the Resources identified
throughout the entire federation immediately available to its own Assets and Subjects.

Another approach is to help the OSID Consumer orchestrate the Repository and
Resource OSIDs.

DRAFT

 69

The degree of one-stop shopping by combining OsidObjects needs careful consideration.
While it is often tempting to overload an application to perform a wide variety of tasks,
an application (or application module) geared toward a specific purpose, such as
managing a directory of people vs. managing digital content, can be easier to use and
develop.

Similar ambiguities exist between the use of Repo

A Subject Adapter floats the Resource Id through the Subject so the Resource can be accessed
using a Resource OSID directly. Another variant is to simply use the Resource Id as the Subject Id.

Data
Storage

Data
Storage

Data
Storage

Resource
Pablo Picasso

Person Record

Resource
Juan Gris

Person Record

Resource
Jean Metzinger

Person Record

Subject
Pablo Picasso

ResourceId
 Record

Subject
Juan Gris

ResourceId
 Record

Subject
Jean Metzinger

ResourceId
 Record

Repository OSID

Resource OSID

sitory and Subject. One OSID Provider may use a Repository hierarchy to express an
ontology that an OSID consumer is expecting to exist in a Subject hierarchy. Again, a
third party may inject an OSID Adapter to remap a Repository to a Subject.

Asset Coverage
The core Asset specification defines methods general to digital content leaving more
specific data to the records. Access to the records requires knowledge of a record Type
specification. For searching Assets, keywords may be supplied by an OSID Consumer
that may be applied to various data elements defined in an OsidRecord without
knowledge of its Type specification.

So far so good. Some keyword queries may require more precision than a string can
offer. Examples are time and space. An OSID Consumer may wish to perform a query to
find Assets relevant within a certain time period, without understanding the specifics of

DRAFT

70

where or how that time period is defined. Asset defines temporal and spatial coverage to
enhance generic searches.

An OSID Provider may allow an OSID consumer to apply this information to an Asset,
or it may prefer to map other methods, perhaps those specified in an OsidRecord.

Intellectual Property
OSID principles regarding Intellectual Property:

• The OSIDs cannot be used in such a way as to prevent uses of content protected
under Fair Use doctrine.

• The OSIDs must not interfere with a user’s ability to understand the rights and
restrictions existing upon content as conveyed by a provider.

Assets describe intellectual property information pertinent in handling digital content.
The first set of methods convey whether or not known copyright protection exists, or the
content is free to use without any strings attached. A search may include a query term to
restrict results to find only those assets which are in the public domain to avoid any
entanglements with copyright law.

• isPublicDomain(): tests if this is a public domain asset with no rights restrictions

• isCopyrightStatusKnown(): tests if there is any valid information available concerning
copyright issues available in the asset.

• getCopyright(): a copyright statement

DRAFT

 71

Asset

getTemporalCoverage()
getSpatialCoverage()

ConcertRecord

getPerformanceLocation()
getPerformanceDate()

An Asset can float temporal and spatial coverage from other data in the Asset.

• getCopyrightRegistration(): a copyright registration number if the content has been
registered with a copyright authority

• getPublishedDate(): the date of asset publication, if applicable. The published status
affects copyright terms in many countries.

For assets protected under copyright, there may be usage restrictions on what can be
done with the asset. This is not a DRM scheme. The purpose is to convey information to
a user of the asset what the provider says they can or cannot do with it once they have it
in hand. If the OSID Provider wishes to restrict access to an asset, then an authorization
should be performed beforehand.

• getLicense(): gets a terms of use for an asset with a valid copyright

• canDistributeVerbatim(): conveys whether or not copies of this asset can be
distributed as-is to any other party

• canDistributeAlterations(): conveys whether or not modifications to this asset can be
distributed to any other party (e.g. derivatives)

• canDistributeCompositions(): conveys whether or not this asset may be included as
part of another asset and distributed to any other party

The license may include particular terms or conditions placed upon the redistribution of
the asset. For example, provider may restrict the posting of an asset to personal blogs. In
this case, canDistributeVerbatim() would be false and the exception for bloggers would be
documented in the license.

The purpose of these methods is to allow an OSID Provider to convey usage information
to repository users in an interoperable manner. These methods are not designed to be the
be-and-end-all of copyright management. Once an Asset has been retrieved, then the
user has it on their computer. If the OSID Provider grants no authorization access to the
Asset, these methods are unavailable. Therefore, the OSID can only convey what can be
done with the content after it has been accessed and downloaded.

Asset Alternatives & Accessibility
Assets may relate to other assets in such a way as to provide alternative representations.
These representations may be different renderings of the same data, such as a larger font
or a different color map, or they may include different data altogether such as an audio
track in lieu of a visual. Assets may also be created with different levels of quality or
fidelity of the same media.

DRAFT

72

The core of the solution lies in the ability to relate assets to each other in the form of
alternatives using the AssetAlternateSession. For any given Asset Id, an OSID Consumer
may request a list of assets that have been designated as alternates.

In imaging, it is often desired to have different versions of the same image produced for
different output devices with varying aspect ratios, color maps, resolution, sharpening,
data formats, etc. To searching subject matter, it is desirable to return one asset for each
criteria match instead of every version that may exist. The ability to focus the search is
available in the AssetSearch interface.

DRAFT

 73

Transaction Trouble
 15

V3 carries forward the Transaction interface from V2. Unlike V2 where the transaction
interface is applied to the manager, a transaction interface is available from OsidSessions.
The V3 OsidManager is stateless.

The OSID interfaces are not transactionally-oriented as they are designed to be
consumer-friendly. OSIDs don’t define method sequences such as prepareToSearch(),
executeSearch(), pickupSearchResults(), finishedWithSearch().

One case might be to update a series of OsidObjects. The session methods take one
object form at a time resulting in an underlying operation for each update. The OSID
Consumer desiring the most efficient means could do the following:

Transaction transaction;
if (session.supportsTransactions) {
	 transaction = session.startTransaction();
}

for (Id id : idsToUpdate) {
 ObjectForm form = session.getFormForUpdate(id);
 form.setSomething(somethings[id]);
 session.updateObject(id, form);
}

if (session.supportsTransactions) {
	 transaction.commit();
}

Code example of using Transaction to update a bunch of objects.

What exactly happens all depends on the OSID Provider. If the OSID Provider does not
support transactions, then each update occurs separately. If the OSID Provider supports
transactions, then the question becomes how it performs error handling.

The OSID Provider can validate the form and return an error on updateObject() and if
supporting transactions it should probably validate as much as possible. However, some
errors won’t be detected until the OSID Provider performs the operation in the
underlying system. In which case, the only place to inform the OSID Consumer of the
problem is from commit().

DRAFT

74

The OSID Provider may or may not have the means of implementing ACID style
transactions. In other words, if a failure occurs for the final update, the OSID Provider
may have no means of rolling back to the state before the transaction began. This issue is
left as a characteristic of the implementation.

Why not have arrays instead of using transaction? One of the uses of Transaction within
an OsidSession is to hide the awkwardness of handling arrays. The OSID Provider, inside
a Transaction block, builds the array on behalf of the OSID Consumer and processes the
array once commit() is invoked.

Transactions across methods that return values can be a bit trickier from the provider
point of view. In the case of search, it might be desirable to invoke several queries within
a single transaction to perform an OR with unique results.

Transaction transaction;
if (session.supportsTransactions) {
	 transaction = session.startTransaction();
}

ObjectQuery query = session.getObjectQuery();
query.matchDisplayName(“Fred”, matchType, true);
ObjectList objects = search.getObjectsByQuery(query);
query.matchDescription(“cartoon”, stringMatch, true);
objects = search.getObjectsByQuery(query);

if (session.supportsTransactions) {
	 transaction.commit();
}

Code example of using Transaction to combine search queries.

The wrinkle in using Transaction is that the method returns an OsidList. An
implementation of such a scheme might do the following:

DRAFT

 75

Attempting the illustrate the control flow in a transactional-based search.

startTransaction();
getObjectsByQuery();
getObjectsByQuery();
commit();

OsidList
Impl

Search
Session

Impl

Underlying System

Consumer

The OSID Consumer invokes the four methods illustrated above. For the first
getObjectsByQuery(), The Search Session implementation instantiates its OsidList
implementation with the data from the first query and maintains a reference to it. When
the OSID Consumer invokes the query the second time, it feeds that query data to the
same OsidList object. When the OSID Consumer commits the transaction, the OsidList
implementation communicates with the underlying system to execute both queries.

Until the first results are made available to the OsidList implementation from the
underlying system, the methods such as hasNext() and getNextObject() block. As results
are available to the OsidList implementation, the OSID Consumer can begin accessing
them.

This illustrates that an OsidList is simply an interface for retrieving things, and its
implementation may be significantly more complex than a simple collection. The heavy
lifting that is pushed into the OsidList implementation serves to simplify the
implementation of the sessions. Even if Transactions is not implemented, it may be a
good idea to push queries and retrievals into the OsidList to enable the session methods
to return immediately and allow OSID Consumers to retrieve objects as they are
available without having to wait for the entire download to complete.

DRAFT

76

OSID Orchestration
 16

When a V2 OSID referenced an object defined in another OSID, its Id was used. For
method returns, the OSID Consumer required knowledge of the orchestration among
OSID Providers to resolve the Id into an object. V3 performs this orchestration.

When a V3 OSID uses as part of its definition an external OsidObject, it provides access to
the OsidManager under which the OsidObject can be queried and managed. The V3
Repository OSID, for example, leverages a Resource to capture identities of people
related to an Asset. The RepositoryManager includes a method to access a
ResourceManager.

An example of OSID orchestration.

RepositoryManager

getResourceManager()
supportsAssetLookup();

getAssetLookupSession();
supportsAssetAdmin();

getAssetAdminSession();
supportsAssetNotificatiion();

getAssetNotificationSession();

ResourceManager

supportsResourceLookup();
getResourceLookupSession();

supportsResourceAdmin();
getResourceAdminSession();

supportsResourceNotificatiion();
getResourceNotificationSession();

…

Orchestrating the OSIDs in this way encapsulates the actual relationship between the
Repository and Resource OSIDs. The OSID Consumer need only identify the identity of
the Repository OSID implementation. The OSID Provider is free to the implement the
Resource OSID in any way it sees fit.

One possibility is that there is no distinct resource service. The available resources are
defined and managed within the repository implementation. In this case, the Repository
OSID Provider maps the interfaces defined in the Resource OSID to its own internal data
and implementation.

This orchestration is only defined when one OSID, as part of its specification, uses
definitions from another OSID. An application that may wish to couple the Repository
and Calendaring OSIDs may have to either have the orchestration performed in an OSID
Adapter or at the OSID Consumer layer.

Not all cases of definition borrowing result in such an orchestration. Some OSIDs, like
Hierarchy, only provide interface definitions.

DRAFT

 77

Caveats
 17

Casting
In V2, the Agent and filing OSIDs defined an interface hierarchy and required the OSID
Consumer to cast one OSID object to another, This requirement has been eliminated in
V3 and replaced with explicit retrievals for any object related to another. As mentioned
earlier, it is common in Java to move up and down both the object and interface
hierarchy as if they were equivalent whether using explicit casting, generics or
polymorphism. The problem this exposes for the service layer is that it mixes up
interface and implementation. Any form of cast performed on an OSID object is by
definition an implementation of an out of band agreement between a particular OSID
Consumer and OSID Provider. All is not bad here in that casting can be used in certain
OSID Adapter implementations where it is necessary to change the behavior of an
underlying implementation but such an OSID Adapter is not free to move
independently from OSID Provider to OSID Provider.

Since we do not want to tie applications to OSID Providers, applications should not cast
or assume any interface or object hierarchy in the OSIDs that are not explicitly indicated
by a Type. Top-level interfaces are defined in the OSIDs as a means of ensuring a degree
of consistency in the specification and simplifies reading the various OSIDs. An
implementation may do what it wants. To examining the Filing case, an Entry contains
methods in common with both a File and a Directory. An implementation of Filing may
not retrieve all the information necessary to fulfill the contract for a File and a Directory.
Casting an Entry to a File may result in an error. Conversely, polymorphing a File back
into an Entry may result in an Entry object that the OSID Provider would never have
generated. The OSIDs attempt to avoid this scenario by requiring retrievals through the
associated sessions and never exposing Entry directly for the sake of saving a few
method definitions.

To summarize, if an application programmer feels the need to cast (in any of its forms),
then it should be considered a red flag. An exception to this rule might be found in the
Java exception mechanism where it is acceptable to catch OsidException, to imply all
OSID exceptions. On the other hand, the OSID doesn’t specify what an exception is so
this hierarchical relationship does not conflict with the OSIDs.

DRAFT

78

Nulls & Method Overloading
To eliminate some ambiguity, V3 specifies a no null rule. Nulls are not permitted as
method arguments or returns. In programming, nulls are often used as a shortcut to
avoid defining additional methods. V3 uses several patterns, albeit at the cost of some
verbosity, to keep the specification clear and precise.

Method parameters are factored in such a way that there are no optional arguments.
This is not performed through method overloading in that overloading is a not available
in many languages. Creates and updates use a separate interface (the OsidForm) to allow
the OSID Consumer to set exactly those parameters which are desired.

An interface may specify that a method may return zero, one or more objects. In the case
of a many object returned, an OsidList is generally used to encapsulate the objects. An
OsidList may be returned with no objects in lieu of a null. In the case of a single object
specification, the method is generally required to return a NOT_FOUND error however
in these cases there is an accompanying test method to avoid the error.

DRAFT

 79

Loading OSIDs
 18

In V2, the OsidLoader is an implementation of a factory pattern to instantiate OSID
Providers. In V3, the OsidLoader is expressed strictly in the terms of an interface that may
support more than one way of getting at an OSID Provider.

The OsidLoader has been renamed OsidRuntimeManager and is also responsible for finding
appropriate implementation configurations and other non-OSID related resources that
may have been installed using the Installation OSID.

Although difficult to ascertain from the interface definition itself, the tea ceremony
inside an implementation of OsidRuntimeManager uses both the Configuration and
Installation OSIDs. Here’s how a Java version would work:

4. An OSID Consumer requests an OSID Provider by supplying the manager
class name.

5. OsidRuntimeManager finds the class. It may find the class using a default
classpath, a configured search path, or use the Installation service to see what
OSIDs are installed.

6. The class is instantiated with the interface of the requested service.

7. The OsidRuntimeManager makes copy of itself for the class being loaded.

8. The OsidManager’s initialize() method is invoked. The argument to initialize() is
the new OsidRuntimeManager.

9. The manager performs any startup initialization. If the manager loads any
other OSIDs, it uses the runtime manager it was given. This instance of the
runtime manager may have been given a different configuration, or a
configuration handle to use when the initialization method asks for its
configuration parameters.

Each new OsidManager gets its own copy of an OsidRuntimeManager so that configurations
may be assigned to each OSID implementation which are centrally managed in the
runtime environment through the Configuration OSID. Each new OSID instantiated is
another link in the chain.

DRAFT

80

A confusing diagram. Separate OsidRuntimeManagers are created and passed to child OSID
implementations. Each manager may have a separate configuration key, among other runtime data,
used to retrieve a configuration.

Assessment
Manager

initialize();
...

Repository
Manager

initialize();
...

Authentication
Manager

initialize();
...

OsidRuntime
Manager

OsidRuntime
Manager

OsidRuntime
Manager

config
service

The OSID Runtime may be implemented in such a way that each OsidRuntimeManager
has awareness of the OsidManager that created it, forming a linked chain of runtimes each
with knowledge of the OSID implementation instantiated. Therefore a configuration
hierarchy may be created so that an OSID Provider can receive a different configuration
based on what OSIDs are on top of it. While never exposing the OSID Consumer directly
to the OSID Provider and maintaining configuration management in the runtime
environment, the behavior of the OSID Provider may be modified based on a specific
OSID Consumer, or a stack of OSID Consumers.

For example, when edu.mit.osidimpl.installation is the OSID Consumer of
com.harvestroad.repository.hive, the repository should only return zip installation files for
getAssets() because the person who wrote the installation implementation believes all repositories
revolve around him can be corrected for in the repository implementation, or into an OSID
Adapter in between.

While never exposing the OSID Consumer directly to the OSID Provider and
maintaining configuration management in the runtime environment, the behavior of the
OSID Provider may be modified based on a specific OSID Consumer, or a stack of OSID
Consumers.

The instantiation of the OsidRuntimeManager is not defined in the OSID (its a utility in the
developer kit) and this is where the chain begins.

DRAFT

 81

This is what an OsidManager might do:

void initialize(OsidRuntimeManager runtime) {

 if (runtime.supportsConfiguration()) {
 ValueLookupSession session = runtime.getValueLookupSession();
 String[] serverNames = session.getValues(serverParameterId);
 String[] authZImpl = session.getValues(authZImplParameterId);
 }

 AuthorizationManager manager = runtime.getManager(OSID.AUTHORIZATION, authZImpl[0]);
}

Code example of using the OSID Runtime to retrieve implementation configuration parameters and
launch another OSID.

The OSID Provider implementation first uses the OSID Runtime environment for access
to configuration parameters. This indirection allows for the change of configuration
management of the OSID Provider. A developer’s OSID Runtime may access
configuration parameters from a local properties file while an enterprise may wish to
centralize configuration management. The OSID Runtime can select a configuration
keyed to the OSID Consumer providing for the ability to customize the OSID Provider
based under what it is running. The details of the configuration interface is defined in
the Configuration OSID.

The OSID Runtime is also used to instantiate other managers. The OSID Runtime
manages issues of finding and loading OSIDs, which may or may not use the language
environment’s search path. This is somewhat analogous to Java’s ClassLoader hierarchy,
where breaking the hierarchy by not using the loader of one’s environment, such as
instantiating a new OsidRuntime directly (like using the System ClassLoader directly) can
result not finding OSIDs of their supporting libraries properly.

This may sound a bit like the V2+ Provider OSID. This interim OSID has been divided
among the V3 OsidRuntime, the V3 Installation OSID, and the V3 Configuration OSID, all
of which play a role in the V3 OSID Runtime environment.

DRAFT

82

Components
 19

The OSIDs are positioned as an interface to a service layer. Sizable applications tend to
be broken down into multiple layers. The service interface describes how a OSID
Consumer interacts with a service which is generally not how an application
programmer wants to manage GUI components.

The service layer is not complete without data descriptions but the OSIDs stay clear of
locking into particular data specification by leaving this open to interface extensions.
This requires type agreements between the OSID Consumer and OSID Provider. Adding
new type support within an OSID Provider can be accomplished with the use of
federating OSID Adapters. A similar modular framework should be available to the
application programmer.

There has been prior work in defining a modular component layer that would ride
above the service layer and encapsulate the GUI management that pertains to the OSIDs.
There may be a component for a particular application platform and look&feel that
performed an asset search. It would encapsulate the search mechanism and any related
types that together with a Repository OSID provides a complete solution for an
application. Such a module can be replaced for a different UI, or adapted as would be
done for the OSIDs for the purposes of federation or adding type support.

Show AssetFind Asset Edit Asset

Repository OSID

Application

Service Layer

Component Layer

The component layer buffers the application from service details.

DRAFT

 83

Fin
d A

sse
t

GUI:
Swing

Ty
pe

s:
as

se
tM

P3

Find Asset

GUI: Swing
Types: assetImage,
assetJPEG, assetTIFF

Find Asset

GUI: HTML
Types: assetImage,
assetJPEG, assetTIFF

Find Asset

GUI: Motif
Types: assetImage,
assetJPEG, assetTIFF

Example components toolbox.

The OSIDs are designed to address a particular problem. The places in the OSIDs that
are open for flexibility should be addressed by the component layer to ease the risk of
bloating applications.While to date there is no component layer offered from O.K.I., it is
necessary to fully grasp the OSIDs and understand what goes where.

DRAFT

84

New Services
 20

Cataloging
The Cataloging OSID defines a simple interface for associating an OSID Id with a
catalog. Many OSIDs define sessions and objects for the purpose of cataloging. A
Repository is an example. The Cataloging OSID exists for those OSID Consumers (or
other OSID Providers) to factor out cataloging operations into a separate service.

Configuration
The Configuration OSID provides a means for an OSID Consumer to manage
configurations and profiles. The OSID Consumer may be an end-user application
needing to retrieve configurations for itself or on a per-user basis.

The OSID Consumer may also be another OSID Provider.

Locale
The Locale OSID is a simplified variant of Dictionary that is more tuned to translating
strings and other localized items across various locales.

Installation
The Provider OSID was developed post-V2 as part of the VUE project to provide a
means for the searching, installation and access to OSID Provider implementations.
Much of this was developed under the constraint of the rest of the V2 specification.

In V3, Provider is renamed Installation. Installation is reduced in scope to handle
searching and retrievals of OSID implementations from remote package repositories and
local installations. The access to installed OSID Providers has been merged with the
OsidLoader.

Journaling
Journaling provides a means of tracking changes to an OSID object. Journaling captures
any metadata associated with an object creation or change and allows objects to be
versioned. The Journaling OSID is highly abstract, and intended for use as an assist to a

DRAFT

 85

OSID Consumer that wishes to factor out journaling operations. Some OSIDs offer a
journaling session.

Metering
To be designed. A service to track and manage usage and allocation.

Provisioning
Provisioning defines a service that performs allocations or assignments among
Resources.

Relationship
To be built. An OSID to capture data about relationships among OsidObjects.

Resource
The Resource OSID defines a service that manages objects referenced throughout the
OSIDs. In V2, this was part of the Agent OSID. The Resource completes the grammar of
the OSID language by describing the direct or indirect object of the sentence. In
provisioning, for example, a librarian may provision a book. The book is represented by a
Resource and the librarian is represented by an Agent. The agent is the authenticated
entity that performed the action. The Agent, in turn, may map to another Resource that
describes the person who has the role of librarian as defined by the Authorization OSID.

Spatial
To be designed. An OSID to manage spatial relationships and provide a Spatial interface
for use with asset spatial coverage.

Topology
The Hierarchy OSID has been simplified to define only the service required to present a
hierarchy of objects defined outside the scope of the hierarchy service. In other words,
the Node has been eliminated and replaced with a single Id. This works better for OSID
Consumers who are using Hierarchy as an assist to structure objects known in their
domain. The V3 Hierarchy is not cyclic.

Topology is a more general form of the V2 Hierarchy OSID that defines both a Node and
an Edge. It can be used to define arbitrary relationships as well as capture the nature of
relationships. They can be hierarchies, rings or general topographical maps.

DRAFT

86

Transport
Transport defines a means to move data. This service is positioned as a utility to OSID
Consumers who wish to abstract implementation specific protocol APIs and provide a
means for containing implementation issues such as server location and fault tolerance.

Type
The Type OSID manages Type definitions across all OSIDs. Its primary purpose is to
provide a standard means for removing hard-coded Type definitions and to provide a
mechanism for the sharing and dissemination of Type definitions.

Additional OSIDs in consideration include Simulation, Payment, and Budgeting.

DRAFT

 87

Interface Navigator
 21

Notification
Session

Admin
Session

Search
Session

Lookup
Session

Osid
Search
Results

Record

Osid
Search

Record

Osid
Order

Record

Osid
Form

Record

Osid
Query

Record

Osid
Object

Record

Osid
Profile

Osid
Proxy

Manager
Osid

Manager

DRAFT

88

